
1946 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

AC4AV: A Flexible and Dynamic Access
Control Framework for Connected

and Autonomous Vehicles
Qingyang Zhang , Graduate Student Member, IEEE, Hong Zhong , Member, IEEE,

Jie Cui , Member, IEEE, Lingmei Ren , and Weisong Shi , Fellow, IEEE

Abstract—Sensing data plays a pivotal role in connected and
autonomous vehicles (CAVs), enabling CAV to perceive surround-
ings. For example, malicious applications might tamper this
life-critical data, resulting in erroneous driving decisions and
threatening the safety of passengers. Access control, one of the
promising solutions to protect data from unauthorized access, is
urgently needed for vehicle sensing data. However, due to the
intrinsic complexity of vehicle sensing data, including historical
and real time, and access patterns of different data sources, there
is currently no suitable access control framework that can sys-
tematically solve this problem; current frameworks only focus
on one aspect. In this article, we propose a novel and flexi-
ble access control framework, AC4AV, which aims to support
various access control models, and provide APIs for dynami-
cally adjusting access control models and developing customized
access control models, thus supporting access control research on
CAV for the community. In addition, we propose a data abstrac-
tion method to clearly identify data, applications, and access
operations in CAV, and therefore is easily able to configure the
permits of each data and application in access control policies.
We have implemented a prototype to demonstrate our architec-
ture on NATS for real-time data and NGINX for historical data,
and three access control models as built-in models. We measured
the performance of our AC4AV while applying these access con-
trol models to real-time and historical data. The experimental
results show that the framework has little impact on real-time
data access within a tolerable range.

Index Terms—Access control, connected and autonomous
vehicle (CAV), data security, system security.

Manuscript received March 6, 2020; revised May 29, 2020 and July 18,
2020; accepted August 9, 2020. Date of publication August 17, 2020; date
of current version January 22, 2021. This work was supported in part by
the National Natural Science Foundation of China under Grant 61872001,
Grant 62011530046, and Grant U1936220; in part by the Open Fund of Key
Laboratory of Embedded System and Service Computing (Tongji University),
Ministry of Education under Grant ESSCKF2018-03; in part by the Natural
Science Foundation of Shandong Province under Grant ZR2018BF014; and
in part by the Open Fund for Discipline Construction, Institute of Physical
Science and Information Technology, Anhui University; and in part by
the Excellent Talent Project of Anhui University. (Corresponding author:
Hong Zhong.)

Qingyang Zhang, Hong Zhong, and Jie Cui are with the School of
Computer Science and Technology and Anhui Engineering Laboratory of
IoT Security Technologies, Anhui University, Hefei 230039, China (e-mail:
zhongh@ahu.edu.cn).

Lingmei Ren is with the School of Computer Science, Shenzhen Institute
of Information Technology, Shenzhen 518172, China.

Weisong Shi is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA.

Digital Object Identifier 10.1109/JIOT.2020.3016961

I. INTRODUCTION

W ITH the fast development of sensing, communica-
tion, and artificial intelligence technologies, connected

and autonomous vehicles (CAVs) have attracted a great deal
of attention from industry and academia [1]–[3]. Several
autonomous driving systems or commercial products have
been released in the industry, such as the Google Waymo [4]
vehicle, the Tesla Autopilot system, and the Baidu Apollo
platform [5]. With the liberation from driving, increasingly
more applications, especially various third-party applications
envisioned by [6], will be installed into future CAVs, as sup-
plements to other three kinds of applications, i.e., advanced
driver-assistant system (ADAS), real-time diagnostics, and in-
vehicle infotainment, to enrich the ride experience. Note that
some applications are cross-cutting because they fall under
more than one category. However, all of they utilize vehicle
sensing data, sensed by a plethora of diverse sensors, to real-
ize their functions. For example, the ADAS leverages the data
of installed cameras, light detection and ranging (LiDAR),
radio detection and ranging (radar), as well as vehicle sta-
tus captured from controller area network (CAN) to perceive
the surroundings and an attack detection application to access
the in-vehicle sound data captured by the microphone as the
input of its speech recognition [7]. That means the sensed life-
critical data is not only used as the input of ADAS but it is also
used by various third-party applications. The malicious appli-
cations may pre-empt the limited computing, memory, storage,
and network resources to perform their purpose after obtain-
ing data from the CAV system, which will affect the safety of
CAVs. Some malicious third-party might tamper data, leading
to wrong decisions on driving, even threatening personal and
public safety.

In prior researches, the access control technique [8]–[10] is
used to protect data from malicious applications by rejecting
unauthorized access, which is a security technique regulat-
ing who or what can view or use resources in a computing
environment. Fig. 1 illustrates the usage of the access control
technique in CAV. However, most current researches on CAVs
focus on the implementation of autonomous driving vehicle
prototypes, including hardware, autonomous driving algo-
rithm [11], and platform [2], [5], [12], and the access control
framework enabling the function of applying access control
technique to vehicular data is lacking in these researches.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2600-6748
https://orcid.org/0000-0002-0392-9734
https://orcid.org/0000-0001-7258-3418
https://orcid.org/0000-0002-5078-5120
https://orcid.org/0000-0001-5864-4675

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1947

Fig. 1. Function of an access control system.

Hence, the first thing is to build an access control framework
for future CAV. However, the future CAV, with various applica-
tions, vehicular data and different access patterns on different
vehicular, is more complex, thus no one existing access control
framework could be applied on CAV, directly. But exist-
ing mechanisms used by some operating systems [13]–[15]
provide some experiences for referencing.

Typically, different access control models are suitable for
different scenarios with different characteristics [16]. For
example, attribute-based access control (ABAC) models with
high confidentiality are widely used in a cloud-based stor-
age scenario [17]. However, its computing resource costs are
high and it might not be suitable for CAV data. In the CAV
area, both performance and security are of high priority. Thus,
how to choose suitable access control models for different
vehicular data is an open problem since no one knows the
effects after applying one access control model. But, in any
case, some characteristics in the system level should be sup-
ported that make the implementation of access control models
be more easy and flexible. First, some novel access con-
trol models might be proposed for applications, especially for
as yet unforeseen applications. Thus, an open-access control
framework is required for access control research. Second, the
access control framework should be fine-grained. Taking the
permits of the steering wheel as an example, it only could
be controlled by ADAS applications, but could be monitored
by many other applications. Third, access control should be
dynamically changed with the context of CAV and system
status. For example, in the application proposed in [7], consid-
ering the user privacy, the permit to access inside video should
be dynamically gained and revoked depending on the recog-
nition of a “help” signal from an inside squeal voice. Finally,
the framework should support applying different access con-
trol models to the same data with different grains or different
data.

However, the design of access control architecture for the
future is challenging as it must fulfill the above requirements
while it must meet the intrinsic complexity of vehicular data,
including historical and real time, and access patterns of differ-
ent vehicular data. Furthermore, there exist various vehicular
data and applications in one CAV, resulting in another chal-
lenge when developing such an access control framework for
future CAV. Generally speaking, an access control framework
should know and identify which application is accessing

which vehicular data with which access operation. Here
naming is a problem, especially for supporting of fine-grained
and dynamic access control, an easy to read and organized
naming mechanism is important so that researcher and user
could easily set access permissions for different applications,
data, and operations.

To tackle the aforementioned issues, in this article, we
first introduce the data generated and stored in CAVs and
its access patterns based on our observations. Then, we
introduce designed access control architecture and data abstrac-
tion method to identify application, data, and operation. The
proposed framework serves as the access control part of
our previous work, open vehicular data analytics platform
(OpenVDAP) [6], which is a full-stack edge supported platform
that includes a series of heterogeneous hardware and software
solutions. We also implement an access control framework
prototype based on the proposed architecture, which responds
to queries for access actions and records these actions for
future auditing. The contributions are summarized as follows.

1) This article is the first to define the data access control
problem in CAVs. According to the observations on sev-
eral CAV platforms, we introduce the characteristics of
data and access pattern in emerging CAVs, in terms of
real-time data and historical data, while different access
patterns are applied. Moreover, different and some new
access control models are required.

2) We propose a three-layer access control architecture to
protect data on CAVs from unauthorized access. The
designed architecture supports fine-grained and dynamic
access control, and it is extensible with APIs to assign
customized access control models implemented by oth-
ers, as well as respond to external access actions,
resulting in easily extending to meet other access pat-
terns.

3) We demonstrate the proposed design through a prototype
framework and evaluate it using different access control
models. Experiment results show that our framework has
a low impact on real-time data and a high but tolerable
impact on historical data, which could be solved by peri-
odically caching application information. Furthermore,
we also test our framework on an experimental CAV
platform implemented based on OpenVDAP architecture
and HydraOne [18], which indicates that our framework
could run on platforms with different hardwares.

The remainder of this article is organized as follows.
We introduce the access control problem of CAVs in
Section II. The designed access control framework is presented
in Section III, followed by its instantiated framework in
Section IV. Section V shows the results by leveraging video
data acquisition for analysis as a case study. We review related
works in Section VI. Finally, we conclude this article in
Section VII.

II. PROBLEM STATEMENT

The data in CAVs are important since it affects the deci-
sion of autonomous driving algorithms and has implications
for passenger privacy. How to protect data from unauthorized

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1948 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

TABLE I
REAL-TIME DATA AND HISTORICAL DATA IN CAVS

Fig. 2. Example data flow of a real-time camera data.

access in CAVs is a big challenge. In this section, we first
introduce vehicular data access patterns. Then, the requirement
of CAV’s access control framework supporting different access
control models is analyzed. Finally, we formally present the
problems of designing an access control framework for future
CAVs.

A. Data Access Pattern in CAV

As observed in [19], there are four categories of
applications, consisting of ADAS [11], [20], real-time
diagnostics [21], in-vehicle infotainment, and third-party appli-
cation [19], [22]. The data accessed by these applications
could be classified into two categories, real-time data and
historical data, based on the observation of several CAV plat-
forms, which will be accessed with different access patterns.
Thus, we will analyze the data access pattern. Table I lists the
storage locations and potential access patterns of these data.

Real-Time Data: The main requirements for real-time data
access are low latency and one-to-many communication since
different applications might access the same real-time data at
the same time. Most existing CAV solutions utilize normal or
modified versions of the robot operating system (ROS) [1],
which provides the publish/subscribe pattern for different
applications of CAVs. Taking Apollo as an example, which is
an open-source CAV platform, including hardware reference,
system, software, and autonomous driving algorithms, it mod-
ified ROS as an underlying system and utilizes message-based
communications (publish/subscribe pattern) to deal with one-
to-many communication (shared memory technique to reduce
the latency of data transmission after version 3.5). In academia,
OpenVDAP [6] also utilizes a message-based architecture to
enable communications of real-time data between devices and
applications.

Fig. 2 illustrates an example data processing flow of real-
time camera data under the publish/subscribe pattern. The
camera pushes raw images to the topic of camera.id1.image,
and several processing nodes subscribe this topic while the
encoding node encodes images into videos for persisting cam-
era data into the file system as historical video data, and the
SLAM node analyzes images for autonomous driving. The
path planning node (also an autonomous driving application)
subscribes the output of the SLAM node and publishes the
control data for chassis control.

Historical Data: For historical data, current CAV solutions
persist real-time data using the ROS built-in function, which
directly saves data as ROS packages. However, it is not a good
way for future CAVs. A simple way is storing structured data
(e.g., GPS data) into a database and unstructured data (e.g.,
video) in the file system. In this case, the application could
inquire about the structured data from the database directly, or
inquire about the storage path of the unstructured data from
the database; then it could access the file in the file system.

However, it is insecure to provide a database interface for
a CAV on the road. Thus, a centralized manager is needed.
To this end, Zhang et al. proposed a module, driving data
integrator (DDI) in the OpenVDAP platform [6], [23], to auto-
matically collect and store relevant context information on the
vehicle and the Internet. The application could inquire data
from this service. In addition, we need to note that the unstruc-
tured data could be accessed through the file system (paths
are queried from DDI) or through the DDI service as a more
secure method.

B. Access Control

The access control technique aims to protect data and
resource in a computer system from unauthorized access.
Typically, it includes several concepts, such as access con-
trol framework and access control model. The former one
captures access actions in an application system or operating
system, and apply one of access control models to authenticate
the access actions. As mentioned before, different types and
access patterns of data exist in CAV, and different applications
are willing to manage their data in different ways. Especially,
for these as yet unforeseen applications, some novel access
control models might be proposed.

Based on the characteristics and requirements of the applied
scenario, various access control models have been proposed,
such as role-based access control (RBAC), identify-based
access control (IBAC), and ABAC [24]. For example, the his-
torical battery information under the IBAC model could be
shared with the ones who have the identity certificate issued
by the car maker. Meanwhile, access control models founded
upon fine-grained and attribute-based encryption (ABE) could
secure data and prevent unauthorized access (without right
attributes), which we will introduce in Section IV. Thus, how
to support several access control models thus provide a flexible
and suitable choice for CAV and CAV application developers
is still a big challenge.

Moreover, the context of CAV is also important for access
control. For instance, third-party applications are prohibited
from accessing network resources due to insufficient network
bandwidth. Or, third-party applications are prohibited from
accessing camera resources to avoid privacy leak, when the
CAV is in a special location.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1949

Problem Statement: Current access control frameworks usu-
ally focus on only one type of data. For example, access con-
trol frameworks in the operating system, messaging system,
and Web service system focus on access of file systems, top-
ics, and HTTP requests, respectively. Thus, to protect data with
a suitable access control models in CAVs with various appli-
cations, data, data access patterns, a systematical, and flexible
access control framework is needed, which is enabled to face
possible changes occurred in the future, first. Here, several
barriers must be solved as follows.

1) How to design a framework to authenticate these access
actions from different data sources with different access
patterns?

2) How to enable the supporting different access control
models in one access control framework, and also enable
the development of new access control models?

3) How to uniquely identify various data in access actions
and access control models from different data sources?

4) How to dynamically make decisions on access actions
based on current vehicle status, including location, com-
puting resource, network resource, as well as supporting
different access control models for different data?

III. SYSTEM ARCHITECTURE

We have introduced the motivations and goals for the access
control framework in future CAVs, and now we will present
our design. First, we will introduce some concepts in an access
control framework, followed by the security and threat model.
Then, we primarily focus on introducing the proposed access
control framework for future CAVs.

A. Definition

A traditional access control framework will authenticate
one subject whether it has the permission of one type of
operation to one object. Thus, an access action could be
described as a tuple {subject, object, operation}.
In detail, the descriptions of object, subject, and
operation in our CAV-specific framework are as follows.

Subject: Various applications, including native applications
(e.g., ADAS applications) and third-party applications, are
installed on CAVs, enhancing the ride experience and pub-
lic safety, and they need to access and analyze data sensed by
CAVs, thus becoming subjects.

Object: The objects refer to the data in CAVs, e.g.,
real-time data and historical data. It is easy to understand,
and most applications analyze sensed data (as objects) for
autonomous vehicles. Additionally, remote data, such as road
conditions or weather data from remote cloud servers or other
vehicles are also included. Furthermore, the application data
is also the object in CAVs, since some applications might
share/require results from collaborative applications.

Operation: As mentioned above, there exist several data
sources in CAVs, including publish/subscribe system
for real-time data, Web-based service for structured
data, and file system for unstructured data. Thus, the
operations defined in access actions currently include
subscribe/publish, get/post/delete, and
create/read/write/delete, respectively.

Fig. 3. Architecture of AC4AV.

In this article, we aim to build an access control frame-
work supporting different access control models with dynamic
adjustment. Thus, we add a segment extra to that tuple,
which is used to store additional information. In the following
sections, the tuple is defined as follows:

{subject, object, operation, extra}. (1)

B. Security and Threat Model

The malicious applications in our threat model always
try to subscribe to the data-related topics in the Pub/Sub
system, query historical data from the database or file system.
Typically, applications are isolated utilizing the container tech-
nology, and they cannot access others’ memory to obtain data,
such as subscribed data and the authentication information. In
this article, we do not consider the leakage of authentication
information and it could be secured by other approaches, such
as secure storage. Additionally, the trusted execution environ-
ment is also promising to provide the isolation of applications,
by executing the part of one application in a hardware-assistant
environment, so that the running application can be pro-
tected from not only other applications but also the operating
system and even hypervisor. Moreover, our AC4AV also can
be executed in that trusted execution environment, such as
Intel Software Guard Extensions (SGX) or AMD Memory
Encryption Technology [25], which could significantly reduce
the attack surface.

C. Architecture of AC4AV

The proposed access control architecture for CAVs is
as shown in Fig. 3, which consists of three components:
1) Access Control Engine; 2) Action Control; and 3) Policy
& Log Database. The Access Control Engine authenticates
operations and responds yes or no to the Action Control
component, which performs as a hook to capture access
actions. The Policy & Log Database stores all data of AC4AV,
such as the configuration file and the access action record, in
a hierarchical mode while frequently used data is stored in the
in-memory database with high-speed access.

Access Control Engine: In the Access Control Engine, we
introduce four major components: 1) access enforcement;
2) context monitor; 3) data abstraction; and 4) engine API.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1950 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Since the goals of our access control system include
dynamic access authentication, the context monitor compo-
nent is used to collect the system’s status information, such
as CPU utilization and GPS, enabling an access control policy
with dynamic features. For example, the A3 application would
gain the access permissions of the historical video data with
the specific location and time ranges.

As discussed in Section II, real-time data are different from
historical data in terms of their access patterns, and differ-
ent data identifying methods are applied by different systems.
Thus, we designed the data abstraction component, which
provides the function of identity conversion. It converts the
identities of objects and subjects in captured tuples
from different data sources and the internal identities to each
other, based on a data abstraction method. Benefiting from
this component, third-party applications also could identify
their own data using an easy-to-read description method when
they implement customized access control policies. The data
abstraction method is introduced in Section IV.

To improve the expandability of our AC4AV, we designed
a component, named Engine API, with a series of APIs. The
provided functions are multifold: 1) to support a customized
policy, a series of APIs for customized policy configuration are
provided for applications to a submitted policy file. Moreover,
several implemented access control models are provided for
AC4AV so that applications could assign different access con-
trol models to protect their data; 2) to support auditing, a series
of APIs are provided for inquiring records of access actions, as
well as results; and 3) to configure AC4AV, a series of APIs
are provided so that the system administrator could config-
ure all components in AC4AV. For example, we will not limit
the database used by Policy & Log Database, so the system
administrator could assign it in the configuration file or adjust
it through the provided APIs in runtime.

The last component of the Access Control Engine is
the access enforcement, which is a core component, just
like an assembler, combining other components to deter-
mine the permission to access actions. While a subject
intends to access the object with the operation, all
the related information of that access action, as shown in
tuple {subject,object,operation,extra}, will be
captured and sent to this component. Then, it will send the
segment of the object to the data abstraction to figure
out the internal identification of the accessed data. Then, it
will authenticate this action using the specified policy, asso-
ciated with other factors, defined in the policy and collected
by the context monitor component. The output of this com-
ponent indicates whether the subject has corresponding
permissions.

Action Control Service: To capture access action and deny
the action without permissions in different data sources, e.g.,
message queue system and Web-based service, the Action
Control service is proposed in our AC4AV, mainly implement-
ing two functions, action capturing and action responding.

The action capturing function is that implemented subser-
vice captures all access actions and submits these actions
to the Access Control Engine with the format as the tuple
{subject,object,operation,extra}. The action

responding refers to subservice performing corresponding
operations (allowing or denying) based on the responses (yes
or no) from the Access Control Engine. Note that the ways for
allowing/denying operations will vary depending on the cor-
responding access method. For instance, an NGINX module
will be implemented for capturing all data access queries to
the DDI module in OpenVDAP, and it will reject all nonper-
mission queries with a 403 status code if it receives a no from
the Access Control Engine. Thus, the Action Control service
will consist of various subservices when implemented.

Policy & Log Database: Vast access action records should
be recorded for future auditing, and many policy files should
be collected in AC4AV. Thus, a Policy & Log Database is
proposed to store this data. It is a two-layer architecture
consisting of two database systems.

The lower layer database is a disk database, and it stores all
information of AC4AV, including access action records, policy
files, configuration files, and so on. However, the disk database
is with a high query latency, and typically, one access control
operation requires a quick response. An in-memory database
is proposed as the upper layer database to reduce the inquiring
latencies of these frequently used policies. Once the AC4AV
starts, the Access Control Engine will inquire those policies
from the disk database and then store the parsed policies to the
in-memory database. We should note that all the stored data
is only allowed to be accessed by the Access Control Engine.
The reason is that stored data, i.e., access action records, policy
files, and configurations of AC4AV, are important, especially
when auditing in an accident investigation.

IV. IMPLEMENTATION

In this section, we introduce the implementation of our
AC4AV prototype. First, we introduce the data abstraction
method. Second, the prototype implementation of AC4AV is
illustrated, followed by three access control models that are
implemented as built-in models in the engine API component.

A. Data Abstraction Method

The naming of objects from different data sources are
different; thus, how to identify subject and object is
a problem that must be solved in an access control frame-
work. To this end, an easy-to-read data abstraction method
is proposed when implementing the prototype of our AC4AV,
which converts the identities of objects and subjects in
the captured tuples from different data sources and internal
identities to each other.

Object: Different data sources have their own methods to
identify data. The following equation is an example identity
on the Pub/Sub system for the installed front camera, which
publishes video data for applications. Thus, one application
could obtain real-time video by subscripting such topic

camera.id1.channel_720P. (2)

In addition, historical data could be accessed through the
Web-based service. Taking the historical video data of the
foregoing camera as an example, one application could request
that data with a specific time period (e.g., t1 and t2) from the

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1951

DDI service. The access URL is as listed in (3). Note that we
omitted “http://” in the equation due to limited space. In
this case, the identity of the historical data is different from
the real-time data, shown in (2)

ddi/camera?type = id1&start = t1&end = t2. (3)

To uniformly identify the data in our AC4AV, we lever-
aged uniform resource identifier (URI), which is a hierarchical
method. Typically, the object can be described in three
parts: 1) owner; 2) identifier; and 3) parameters. The iden-
tities listed in (2) and (3) can be, respectively, described as
the following based on our method:

/sys/camera/front/realtime?resolution = 720 (4)

/sys/camera/front/history?start = t1&end = t2. (5)

Here, /sys indicates the owner, the identifier of data
is camera/front/realtime, and resolution=720
assigns the resolution of the subscribed video stream, while
a real-time video source might publish several streams to
the system with different resolutions. Similarly, the histor-
ical data sensed by the same sensor can be identified by
replacing realtime with history and setting some param-
eters, such as start and end timestamps. Based on this
method, the object can be uniformly identified in the data
abstraction component, regardless of the object in the
publish/subscribe system or in the DDI service.

Subject: In addition, we also use this method to iden-
tify subjects (applications). For example, the application
A3 [19] could be defined as /com/qyzhang/A3?v=1.0,
while com/qyzhang is the owner and A3 is the identi-
fier. Moreover, a group label can be defined to identify a
set of applications thus providing a simpler way to man-
age applications in an access control policy. For exam-
ple, group:autonomous-services is used to refer all
services related to autonomous driving. Note that this group
label should be created as a system-level configuration through
the engine API component.

B. Implementation

We implement a prototype of AC4AV based on the proposed
architecture. Most parts of the implemented prototype are pro-
grammed using Golang language, except the Action Control
subservice on NGINX and the ABE algorithm, which is imple-
mented using C/C++ language. In addition, we have tested our
prototype on two different platforms. One is a normal desktop
with the Intel CPU, and another is our HydraOne platform [18]
with the NVIDIA Jetson TX2 processor, which is an indoor
experimental research and education platform for CAVs based
on OpenVDAP architecture [6].

Action Control: The Action Control service consists of var-
ious subservices, implemented to capture all access actions
from different systems. In this prototype, we implement two
subservices. One is embedded in a publish/subscribe system
for real-time data and another is embedded in a Web server
for historical data, as shown in Fig. 4.

Fig. 4. Implemented subservices for the Action Control service.

The chosen publish/subscribe system for our AC4AV proto-
type is NATS [26], which is a simple, high-performance open-
source messaging system that provides multilanguage clients,
such as Python, Java, C, etc. When recompiled NATS receives
a subscription request, the implemented module will capture
all information about this action and send this information to
the Access Control Engine for authentication. If the response is
no, it will reject this subscription action. In our prototype, the
identity of a subject is captured according to the socket’s
port used by the application once the application connects to
the NATS. The object is the subscribing or unsubscribing
topic. In addition, we also modify the protocols of NATS so
that the applications can attach extra information in PUB, SUB,
and UNSUB protocols for authenticating under different access
control models.

Applications could inquire the structured data and meta-
data of unstructured data from the DDI service, hosted on
NGINX [27] in our prototype, which is a popular and high-
performance tool to implement a Web server. Benefiting from
the expansibility of NGINX, we implemented a subservice
of the Action Control service using the C++ language, reg-
istered to NGX_HTTP_ACCESS_PHASE on NGINX. Similar
to the subservice in the recompiled NATS, the implemented
NGINX module will collect the access information from an
HTTP request received by NGINX to the DDI service. Then,
the information is sent to the Access Control Engine, and the
HTTP query is rejected with a 403 Forbidden HTTP status
code if the response is no.

Access Control Engine: For the Access Control Engine, it
is implemented as a RESTful Web service. The principle of
the data abstraction component has been described in the
previous section. We implemented this component and provide
internal functions for other components, i.e., access enforce-
ment component. Note that we use an external storage system,
i.e., Redis, to store mapping relationships for identity conver-
sion, in our prototype, which causes extra communications on
inquiring identities. The reason is to improve the scalability,
considering the increase in the number of mappings. For the
context monitor component, it periodically obtains and caches
system running status from underlying system interfaces, e.g.,
CPU utilization, as well as some privacy information about
vehicle status from the modified NATS, such as GPS data.
The engine API component allows the system administra-
tor to configure the access control framework and third-party
applications to update their configuration. Listing 1 illus-
trates the interfaces we implemented in our prototype. The
UpdateConfigure interface allows the system administra-
tor to update system’s parameter, and the InquirePolicy
interface allows the system administrator or third-party appli-
cation to obtain policies corresponding to the data. Note that

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1952 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Listing 1. Interfaces implemented in the prototype.

Listing 2. Example of the access control policy.

we allow the system administrator to view all policies and the
application to view its own data’s policies. To support audit-
ing, we also implemented the InquireActionLogList
interface for inquiring access action records with a set of
query conditions. In addition, the remaining three interfaces
allow for the management of policies. Similarly, we only
allow an application to manage its own policies. Moreover,
to reduce the attack surface, only the necessary APIs are open
to management. Furthermore, some authentication approaches
should be considered when calling these APIs. For example, as
mentioned before, a hardware-assisted trusted execution envi-
ronment could ensure that application codes are not modified
and provide local attestation. Thus, secure channels between
our AC4AV and other applications may be established [28].

The access enforcement component implements the func-
tion of the receiving access actions, authenticating permission,
and responding to the access actions. To describe a policy,
JavaScript Object Notation (JSON) is used to represent the pol-
icy’s features, which is a lightweight data-interchange format.
Listing 2 shows an example policy. The parameter segment is
used to describe the data. Here, we assign three access con-
trol models to data with different parameters of resolution,
while autonomous driving applications could access 4k video
data based on the defined access control model. Note that the

h264-encoded video is the output of the encoding_node
in Fig. 2 (camera.id1.hdvideo) and the raw one is the
output of the camera_node_1 (camera.id1.image),
while we assume camera_node_1 and encoding_node
are the system services for the camera 1. The access control
models will be introduced in the next section. The limit
segment determines the limitations of data on the vehicle sta-
tus, i.e., CPU, memory, and network. Moreover, we can move
the same parameter to the data segment, like the “fps=25.”
In addition, the data owner could authenticate access actions
on its own data, by setting type to “external” in the
access_model segment. Typically, the external component
must be implemented with an interface to accept the tuple
and can be used to achieve dynamic access control. Thus, the
access enforcement component will forward the request to the
assigned external link defined in the service segment.

Policy & Log Database: We implemented this service
based on two types of databases. For the disk database,
MongoDB [29] is used to store all data, including policies,
access action records, and configurations. Every access action
with the result and related parameters (such as used system
status) is recorded by the Access Control Engine and stored
in MongoDB. The used in-memory database in our prototype
is Redis [30], which is an open-source database and provides
key-value storage. Redis will cache these frequently used poli-
cies, such as the policies of parts of real-time data and created
by running applications, and use the data segment in JSON
files as keys. Furthermore, as mentioned above, the identity
mapping relationships are also cached in Redis, while those
are also persisted on the disk database.

C. Access Control Model

In this section, we illustrate several implemented access
control models used for different applied scenarios in this arti-
cle: access control capability list (ACCL)-based discretionary
access control (DAC) model, IBAC model, and ABAC model.
The tuple captured by our AC4AV could be used to develop a
new access control model.

ACCL-Based DAC Model: An ACCL-based DAC model
restricts the access to the regulated objects through ACCLs,
which define the set of subjects and their operation
permissions. Here, the ACCL-based access control model is a
simple DAC model. The model applied to 3840 × 2160 video
data in Listing 2 is an example of the ACCL-based DAC
model. Once the access enforcement component receives an
access action with the object assigned to ACCL model, it
checks whether the subject is included in the list defined by
the applications segment. This model is appropriate for
the scenario that has clearly known all subjects who will
access the data so that it could list exhaustively in the policy.

IBAC: An IBAC model restricts access to the regulated
objects through the identity of the subjects, which
has several ways to implement. In our prototype, we use
a certificate-based approach. The data requester (object)
should obtain the certificate issued by the data owner using
a private key and attaching the certificate when inquiring the
data. Only the certificate is valid, the subjects could access

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1953

Fig. 5. Example of the access structure.

the data. This model is flexible when the owner could make
allowed objects be part of the issued certificate. Thus,
the applications developed by the same company with differ-
ent application names could access the data without multiple
authorizations.

ABAC Model: In our prototype, an ABAC model restricts
access to the regulated objects through encrypting the
data of the subjects. Thus, the data can be public for
all applications but encrypted by related attributes, defined in
an access structure. Only the data requesters, who have the
related attributes, can decrypt the data from ciphertexts. Once
the access enforcement component receives an access action
assigned to the ABAC model, it directly allows the request.
Fig. 5 illustrates an example of an attribute-based access struc-
ture for real-time video data captured by onboard cameras. It
determines that the one with the attribute of “law enforce-
ment” or the attribute of “autonomous driving applications”
could access real-time video data, as well as the one which
has the attribute of “public safety application” could access
the data in a special time range.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the response time of access
actions, in terms of the topic subscription on NATS and
HTTP query forwarded by NGINX. Next, we evaluate the
performance of permission updating and revoking, i.e., the
effective time interval of the policy going into effect.

A. Experimental Setup

We simplify the environment and assume there are five
types of entities, as illustrated in Fig. 6, including data
requester, data owner, message queue system, Web service,
and AC4AV. To evaluate the performance of our AC4AV
as well as the impacts of different access control models,
we set up four cases based on three access control models:
1) ACCL; 2) Local Cert; 3) Remote Cert; and 4) ABAC.
In Local-Cert case, the certificate verifying is performed
in Access Control Engine, and the Remote-Cert case
uses a third-party application to verify certificates. In addition,
the ACCL and ABAC cases have similar processes in Access
Control Engine. In an ACCL case, it will check whether
the requester is defined in the list and the ABAC case will
allow all access actions. When evaluating the performances,
four vision-based ADAS algorithms are running to simulate
background workloads [31].

Fig. 6. Implementation of our experiment.

The computing unit used in the experiment is with an Intel
Core i5-7400 Processor @ 3.0 GHz (in performance mode).
We evaluate the performance of our AC4AV with concurrent
users, where each user sends one query per second and the
duration time is set to 10 s. The number of users is ranged
from 50 to 1000. The reason of the maximum of users with
1000 is that it is probably higher than the number of expected
installed applications in one CAV and is enough to perform
a stress test. Additionally, the application keeps HTTP con-
nections alive and reconnect, automatically, which enables the
connection reuse to avoid establish a new connection with
latency. We should note that all connections are within the
CAV, and also work well even the Internet is disconnected.
The symmetric cryptography used to encrypt and decrypt is the
advanced encryption standard (AES) with the 128-b security
level. The certificate is formatted as X.509, including the ellip-
tic curve (ECC)-based public key (P-256 curve, the default in
Golang). It is noted that some lightweight cryptographic algo-
rithms [32], [33] could reduce the latency, including certificate
and attribute verifying, with the same security level, and we
only evaluate our AC4AV with some open-source algorithms
and standard algorithms.

B. Performance

First, we evaluated the performances of our AC4AV. The
baseline here is the scenario without an access control
technology. We counted the extra latency, in terms of cer-
tificate verifying, Redis querying, communication (including
queueing time), and other remaining time (as processing
latency).

1) Response Time of Access Action: Fig. 7 illustrates the
latencies of access actions on the NATS with different access
control models. The ACCL and ABAC cases have almost the
same response time, thus we merge them in one bar, and
they have lowest response time. The Remote-Cert case has
the highest response time since it has additional communi-
cations between the AC4AV engine and third-party authority.
The results show that our AC4AV framework could handle
the authentication on data access actions in real time, and the
latencies are decreased as the increasing of concurrent data
requesters. It is because that the part of threads awakening is
saved. In our experiments, an ECC-based certificate verifica-
tion takes from 108 µs (with 1000 requesters) to 130 µs (with
50 requesters). The Redis time here includes data abstraction
operation and policy querying cost, and takes 210 and 100 µs,
respectively, for 100 and 1000 requesters.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1954 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 7. Access action response time for real-time data with different access
control models.

Fig. 8. Access action response time for historical data with different access
control models.

Fig. 8 illustrates the performance of responding to access
actions captured by Nginx. Similar to the response time of
actions captured by the message queue system, the ACCL and
ABAC cases have the lowest response time. However, when
the number of concurrent requesters reach to 500, the Remote-
Cert case cannot handle action authentication in real time,
and all cases are affected when the number is 1000. In our
experiments, the real processing time plus Redis querying and
certificate verification are low, but the thread is waiting when
a synchronous request is sent, which wastes system resources
and results in a long in-coming request queueing time. In
addition, such intensive access requests (i.e., 1000) might be
infrequent in CAVs. We should note, to be noninductive for a
third-party application while inquiring data, the subcomponent
of Nginx finds out the HTTP sender by matching the incoming
port with system information stored in /proc. It costs up to
13 ms. Thus, a cache is built to save searching time to several
microseconds for these reused HTTP clients, which use the
same port to communicate with the same host. In our exper-
iment setting, all requesters use reuse-enabled HTTP clients,
thus the averaged processing time is low in results.

Insight 1: Different access control models causes different
extra overhead with different security levels and an asynchro-
nization optimizing (i.e., using callback for communications)
should be considered to avoid request queueing.

Fig. 9. Time for permission updating with different access control model.

2) Policy Updating and Revoking: In particular, when
a malicious third-party application is detected, its permis-
sions should be revoked as quickly as possible. The interval,
between the time of sending permission updating/revoking
request and entry-into-force time, is the key metric.

For permission updating, the data requester requests the per-
mission of one object from the data owner through the API of
Access Control Engine. For the ACCL case, the Access Control
Engine responds to the request directly in our experiments. For
other cases, it must notify the data owner for further process-
ing, i.e., generating certificate in certificate-based models, or
generating/updating keys in the ABE case. Fig. 9 illustrates
the performance of permission updating. The ACCL and Cert
cases have similar latency. The ABAC case has a larger latency
due to additional data transmission time with the third-party
application and the generating of ABE attribute keys also costs
much time than other cases, resulting in that the ABAC case
cannot respond to concurrent requests very well. Note that the
generating time of attributes is positively related to the num-
ber of attributes. In our experiment, it randomly generates up
to ten attributes for each requester.

For permission revoking, the processes of the ACCL and
Cert cases are the same, thus we only show the ACCL case
here. For these real-time data, the engine should notify the
message queue system to unsubscribe that subscription, so
that the ending time is when the subscription is unsubscribed.
However, there exists an exception that the data owner only
needs to update the encryption key for data with a new
access structure or update part of attributes of applications
while applying an ABAC model to the data. In this case, the
time of generating a new encryption key is the ending time
for the ABAC case. Additionally, we also measure the time
consumption of generating attributes for applications.

The results of the ACCL case on permission revoking in
Fig. 10(a) show that our AC4AV framework could perform
permission revoking in real time, even in a concurrent envi-
ronment. Fig. 10(b) shows the results in the ABE case. Here,
we use the access structure in the form of a complete binary
tree. The results show that the latency increases as the number
of access structure layers increases. It means that permis-
sion revoking is a time-consuming operation in an ABAC

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1955

(a) (b)

Fig. 10. Time for permission revoking with different access control model.
(a) ACCL model. (b) ABAC model.

model. Moreover, if a new access structure, which enables
unrevoked applications to decrypt the encryption key and dis-
able the revoked applications, cannot be constructed, the data
owner must update keys for all unrevoked applications, which
costs much time. Although the revocation operation time is
costly, the ABAC model still has obvious advantages in data
confidentiality and convenience, especially avoiding to encrypt
data for each data requesters.

Insight 2: The security and performance should be traded
off. The model with high computing latency leads to a poor
performance in a high concurrency scenario, which should be
avoided.

C. Case Study: Video Analytics for CAVs

Finally, we use a video analytics application in CAVs as
the case studies to measure the impact on one data stream of
our AC4AV. The measured application is the lane detection.
It is a basic but essential component of the ADAS system for
CAVs [31], which processes video data and detect lanes of
the road thus the ADAS could make the vehicle stay inside
the lane markings. Hence, we measure the performance of
real-time data when applying our AC4AV with different access
control models.

After subscribing to the live video, the application could
obtain the video stream from NATS. For ACCL case and Cert-
based cases, they have no difference in video data transmission
and processing, and they are the same with the case without
the access control mechanism. Only the authentication at the
subscription stage is different, which was measured before,
thus we only show the results of the baseline (without access
control mechanism) and ABAC case. The difference between
these two cases is that the former one does not encrypt the
video data and the latter one encrypts the video data using
AES while the AES key is encrypted by the ABE algorithm.
We also measured the performance with two common video
formats, raw video data, and H264-encoded video data, while
both of them could be obtained from camera devices.

Here, we select round 5-s experimental data as shown in
Fig. 11. The raw video with the AES encryption case has the
highest latency and the raw video without the AES encryption
case has the lowest latency. It is because that the encrypting
and decrypting of raw video data cost much time (i.e., 50 ms).
Both of the H264-based cases have almost the same latencies.
In our case of video data, the transmitted data size of raw video
cases is about 140× larger than the H264-encoded cases. To

Fig. 11. Latency over time of a round 5-s real-time data.

Fig. 12. Encrypting and decrypting impacts on latency over time of a round
5-s real-time data.

Fig. 13. Latency on different operations.

clearly show that, we also present the impacts of encrypting
and decrypting as shown in Fig. 12.

Fig. 13 shows the detailed time consumption on different
operations in our experiments, while the lane detection-related
operations are the same for all cases. Here, the encryption
and decryption cause much time and thus it is suggested to
encode the video while encryption is applied. We should note
that we do not take video encoding time in count, since some
cameras could provide the H264-encoded video data, directly,
by utilized inside hardware encoder, which is more effective
than software-based encoding. The lane detection we used is a
traditional computer vision-based algorithm, which costs less
time than most deep learning-based algorithms. For example,
we also evaluate the performance of Yolo3-tiny, which could

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1956 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

detect objects (e.g., obstacles) in video, and it costs around
one second for each frame.

Insight 3: The internal data transmission latency is low
and large volume data should be compressed before encrypted
transmission, unless the time of compression and decompres-
sion will be higher than encryption and decryption.

D. Summary

Typically, the fastest possible action by a human driver
takes 100–150 ms [34]. Faster action (i.e., within 100 ms)
than human drivers should be preformed by CAVs with bet-
ter safety [35]. In addition, similar industry standards are
published by Mobileye [36] and Udacity takes this timing
requirement into the design specifications. In this case, the
latencies while applying our framework and access control
models should also be limited to 100 ms. Based on the exper-
iments, the latencies incurred by our framework are tolerable
for CAVs, while most of the cases are less than 2 ms under
a reasonable concurrency, except the ABAC model case for
video data. Generally, it is unavoidable that more computation
is required to ensure the security of data. Thus, although it is
a tradeoff problem, our framework could capture the access
actions in CAVs, enable different access control models to
different data, and has tolerable overhead.

VI. RELATED WORK

CAV as an emerging research direction has attracted a great
deal of attention from industry and academia. In this section,
we discuss the related work in the following primary areas:
1) CAV system and platform and 2) access control for CAVs.

CAV System and Platform: Currently, some CAVs are pub-
lished, such as Google Waymo, Denso Tesla, Baidu Apollo,
and PerceptIn DragonFly Pod. Traditional automakers have
also released their CAV plans. General Motors has prepared
a car without a steering wheel or pedals, and is asking DOT
permission to deploy it on road [37]. BMW has been test-
ing CAV on public roads for several years. Most CAVs are
usually equipped with heterogeneous computing devices [2],
[12], [38], such as GPU-based Nvidia PX, DSP-based TDA
from Texas Instruments, FPGA-based Cyclone V of Altera,
and ASIC-based EyeQ5 from MobilEye, while Nvidia PX plat-
form is a leading GPU-based solution for CAVs. Building on
these heterogeneous computing devices, a real-time operating
system will be installed for these latency-sensitive autonomous
driving algorithms, e.g., QNS and VxWorks. Currently, most
existing autonomous driving systems and platforms utilize a
message passing architecture for communication. For exam-
ple, Apollo was built based on a modified version of the
ROS [39]. In addition, Wang et al. [18] developed an indoor
experimental CAV platform, HydraOne, based on the ROS,
which is an implementation of OpenVDAP [6]. However, due
to the limitation of ROS on performance, as well as relia-
bility and security issues, current ROS is not suitable for the
production deployment of CAVs unless automotive-grade stan-
dards are met. Thus, some works are proposed. Tang et al.
proposed the PerceptIn Operating System for low-speed CAVs,

which is based on Nanomsg, a socket library providing sev-
eral common communication patterns, including messaging. In
addition, Baidu has established cooperation with some tradi-
tional automakers to build CAV products based on its Apollo,
which was developed based on the modified version of ROS.

Access Control for CAVs: The access control technique
has been applied to many areas, such as cloud stroage [40],
IoT [41]–[43], smart health [44], as well as CAVs [45].
However, the scheme proposed by Habib et al. [45] only dealt
with the access control problem of data sharing between dif-
ferent CAVs. As far as we know, there is not any research
focusing the data sharing inside CAV. As mentioned above,
the current CAV system is a closed system, which cannot sup-
port third-party applications, or can only install these in the
in-vehicle infotainment system, such as Android Auto with
limitation of accessing vehicle sensing data. Thus, we mainly
discuss access control on the ROS in this section. The ROS is
an open-source framework for robots, including a collection
of tools and libraries. Some works have studied the security of
ROS [46]. SROS is an official version of ROS, including a set
of security enhancements, such as securing all socket trans-
port within ROS and access control mechanism [47], [48].
The provided access control model is similar to our ACCL
model, which only allows one topic to be published/subscribed
by special publishers/subscribers defined in a policy file [13].
However, it cannot deal with all access control requirements
mentioned before. Similar to ROS, most existing message
queue systems only provide the access control mechanism
of the ACCL model. Ferraiolo et al. [49] proposed a novel
architecture and framework for access control policy speci-
fication and enforcement, which is a general access control
architecture and could support several access control models.
However, deploying such access control architecture into CAV
requires much more research, such as implementing access
action monitors (i.e., subcomponents of our Action Control),
and it is not easy to use without APIs. The CAV has a certain
similarity with the mobile phone to some extent, such as per-
sonality. Android as a popular operating system has provided
an access control framework, and to improve the flexibility,
some works have been presented. Shebaro et al. [14] imple-
mented a context-based access control systems for mobile
devices, while the privileges of an Android application could
be granted or revoked based on the specific context of the user,
such as location. However, current mobile operating systems
cannot meet the requirements of CAVs, due to the characteris-
tics of CAVs on existing multiple access patterns as mentioned
before.

VII. CONCLUSION

In this article, we investigated the characteristics of data
and access patterns, as well as the difficulties of design-
ing and implementing an access control framework in the
CAV scenario. To tackle these problems, we designed and
implemented a three-layer access control framework to authen-
ticate access actions of real-time data and historical data on
different systems, which supports fine-grained and flexible
access control models and is extensible with several APIs,
enabling configuring access control policy to application and

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: AC4AV: FLEXIBLE AND DYNAMIC ACCESS CONTROL FRAMEWORK FOR CAVs 1957

implementing customized access control models. Then, we
implemented a prototype that could capture real-time data
access actions on the publish/subscribe system and histori-
cal data access actions on the Web service. In addition, three
access control models are implemented as built-in models, and
third-party developers could utilize those directly or apply
their own access control models through APIs. Finally, we
demonstrated our framework by evaluating the performances
in the cases of applying different access control models to
vehicle sensing data. The results show that our framework has
a tolerable impact on access actions.

The current version of our framework has low overhead
for access actions, and several improvements could be per-
formed in future studies to further reduce the latency. We will
design caching modules for different framework components.
For instance, frequently used policies and identity mapping
relationships could be cached in the Access Control Engine
component thus no Redis access is requested. Moreover, we
will try to analyze the requirements of access control models in
CAVs and design suitable access control models. Furthermore,
benefiting from the expandability of our AC4AV, we will
implement more Action Control subservices to face changes in
future access patterns, e.g., sharing memory mode for real-time
data.

ACKNOWLEGMENT

The authors are very grateful to the anonymous referees for
their detailed comments and suggestions regarding this article.

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge com-
puting for autonomous driving: Opportunities and challenges,” Proc.
IEEE, vol. 107, no. 8, pp. 1697–1716, Aug. 2019. [Online]. Available:
https://doi.org/10.1109/JPROC.2019.2915983

[2] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and
B. Litkouhi, “Towards a viable autonomous driving research
platform,” in Proc. IEEE Intell. Veh. Symp. (IV), Gold Coast,
QLD, Australia, Jun. 2013, pp. 763–770. [Online]. Available:
https://doi.org/10.1109/IVS.2013.6629559

[3] M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac,
“Block4forensic: An integrated lightweight blockchain framework
for forensics applications of connected vehicles,” IEEE Commun.
Mag., vol. 56, no. 10, pp. 50–57, Oct. 2018. [Online]. Available:
https://doi.org/10.1109/MCOM.2018.1800137

[4] (2019). Waymo. Accessed: Aug. 8, 2019. [Online]. Available: https:
//waymo.com/

[5] Apollo: Autonomous Driving Solution, Baidu Inc. Beijing, China,
2017. Accessed: Dec. 27, 2017. [Online]. Available: https:
//apollo.auto/index.html

[6] Q. Zhang et al., “OpenVDAP: An open vehicular data analytics plat-
form for CAVs,” in Proc. IEEE 38th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Vienna, Austria, Jul. 2018, pp. 1310–1320. [Online].
Available: https://doi.org/10.1109/ICDCS.2018.00131

[7] L. Liu, X. Zhang, M. Qiao, and W. Shi, “Safeshareride: Edge-based
attack detection in ridesharing services,” in Proc. IEEE/ACM Symp.
Edge Comput. (SEC), Seattle, WA, USA, 2018, pp. 17–29. [Online].
Available: https://doi.org/10.1109/SEC.2018.00009

[8] R. S. Sandhu and P. Samarati, “Access control: Principle and practice,”
IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, Sep. 1994. [Online].
Available: https://doi.org/10.1109/35.312842

[9] F. Li et al., “Cyberspace-oriented access control: A cyberspace
characteristics-based model and its policies,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 1471–1483, Apr. 2019. [Online]. Available: https:
//doi.org/10.1109/JIOT.2018.2839065

[10] Q. Lyu, Y. Qi, X. Zhang, H. Liu, Q. Wang, and N. Zheng,
“SBAC: A secure blockchain-based access control framework for
information-centric networking,” J. Netw. Comput. Appl., vol. 149,
Jan. 2020, Art. no. 102444. [Online]. Available: https://doi.org/10.1016
/j.jnca.2019.102444

[11] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous driving,”
in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile,
Dec. 2015, pp. 2722–2730. [Online]. Available: https://doi.org/10.1109
/ICCV.2015.312

[12] S. Liu, J. Tang, Z. Zhang, and J. Gaudiot, “Computer architectures
for autonomous driving,” Computer, vol. 50, no. 8, pp. 18–25, 2017.
[Online]. Available: https://doi.org/10.1109/MC.2017.3001256

[13] R. White, H. I. Christensen, G. Caiazza, and A. Cortesi, “Procedurally
provisioned access control for robotic systems,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Madrid, Spain, Oct. 2018, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/IROS.2018.8594462

[14] B. Shebaro, O. Oluwatimi, and E. Bertino, “Context-based access con-
trol systems for mobile devices,” IEEE Trans. Depend. Secure Comput.,
vol. 12, no. 2, pp. 150–163, Mar./Apr. 2015. [Online]. Available:
https://doi.org/10.1109/TDSC.2014.2320731

[15] R. Wang et al., “Spoke: Scalable knowledge collection and attack sur-
face analysis of access control policy for security enhanced android,” in
Proc. ACM Asia Conf. Comput. Commun. Security, 2017, pp. 612–624.
[Online]. Available: https://doi.org/10.1145/3052973.3052991

[16] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control
in Internet-of-Things: A survey,” J. Netw. Comput. Appl., vol. 144,
pp. 79–101, Oct. 2019. [Online]. Available: https://doi.org/10.1016
/j.jnca.2019.06.017

[17] S. Roy, A. K. Das, S. Chatterjee, N. Kumar, S. Chattopadhyay, and
J. J. P. C. Rodrigues, “Provably secure fine-grained data access control
over multiple cloud servers in mobile cloud computing based healthcare
applications,” IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 457–468,
Jan. 2019. [Online]. Available: https://doi.org/10.1109/TII.2018.2824815

[18] Y. Wang, L. Liu, X. Zhang, and W. Shi, “Hydraone: An indoor
experimental research and education platform for CAVs,” in Proc. 2nd
USENIX Workshop Hot Topics Edge Comput. (HotEdge 19). Renton,
WA, USA, 2019. [Online]. Available: https://www.usenix.org/conference
/hotedge19/presentation/wang

[19] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Distributed collabora-
tive execution on the edges and its application to amber alerts,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3580–3593, Oct. 2018. [Online].
Available: https://doi.org/10.1109/JIOT.2018.2845898

[20] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D
object detection network for autonomous driving,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 6526–6534. [Online]. Available: https://doi.org/10.1109
/CVPR.2017.691

[21] M. Amarasinghe et al., “Cloud-based driver monitoring and vehicle
diagnostic with OBD2 telematics,” in Proc. 15th Int. Conf. Adv. ICT
Emerg. Regions (ICTer), Colombo, Sri Lanka, Aug. 2015, pp. 243–249.
[Online]. Available: https://doi.org/10.1109/ICTER.2015.7377695

[22] B. Qi, L. Kang, and S. Banerjee, “A vehicle-based edge computing plat-
form for transit and human mobility analytics,” in Proc. 2nd ACM/IEEE
Symp. Edge Comput., San Jose, Ca, USA, Oct. 2017, pp. 1–14. [Online].
Available: http://doi.acm.org/10.1145/3132211.3134446

[23] L. Liu, X. Zhang, Q. Zhang, A. Weinert, Y. Wang, and W. Shi,
“Autovaps: An IoT-enabled public safety service on vehicles,” in
Proc. 4th Workshop Int. Sci. Smart City Oper. Platforms Eng., 2019,
pp. 41–47. [Online]. Available: http://doi.org/10.1145/3313237.3313303

[24] W. Ding, Z. Yan, and R. Deng, “Privacy-preserving data pro-
cessing with flexible access control,” IEEE Trans. Depend. Secure
Comput., vol. 17, no. 2, pp. 363–376, Apr. 2020. [Online]. Available:
https://doi.org/10.1109/TDSC.2017.2786247

[25] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel
SGX and AMD memory encryption technology,” in Proc. 7th Int. Conf.
Hardw. Archit. Support Security Privacy (HSAP’18), Jun. 2018, pp. 1–8.
[Online]. Available: https://doi.org/10.1145/3214292.3214301

[26] NATS—Open Source Messaging System, NATS, San Francisco, CA,
USA, 2019. Accessed: Sep. 25, 2019. [Online]. Available: https://nats.io/

[27] NGINX | High Performance Load Balancer, Web Server, and Reverse
Proxy, NGINX Inc, San Francisco, CA, USA, 2019. Accessed: Sep. 15,
2019. [Online]. Available: https://www.nginx.com/

[28] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architectures for
isolation and attestation,” IEEE Trans. Comput., vol. 67, no. 3,
pp. 361–374, Mar. 2018.

[29] The Most Popular Database for Modern Apps | MongoDB, MongoDB,
Inc, New York, NY, USA, 2019. Accessed: Sep. 30, 2019. [Online].
Available: https://www.mongodb.com/

[30] Redis, Redis Labs, Mountain View, CA, USA, 2019. Accessed: Sep. 17,
2019. [Online]. Available: https://redis.io/

[31] M. Maestre. (2019). Lane Detection Module Using C++ and
OpenCV. Accessed: Oct. 2, 2019. [Online]. Available: https:
//github.com/MichiMaestre/Lane-Detection-for-Autonomous-Cars

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

1958 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

[32] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based encryption
scheme for the Internet of Things,” Future Gener. Comput. Syst., vol. 49,
pp. 104–112, Aug. 2015. [Online]. Available: https://doi.org/10.1016
/j.future.2014.10.010

[33] J. Zhang, J. Cui, H. Zhong, Z. Chen, and L. Liu, “PA-CRT: Chinese
remainder theorem based conditional privacy-preserving authentica-
tion scheme in vehicular ad-hoc networks,” IEEE Trans. Depend.
Secure Comput., early access, Mar. 11, 2019, [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2904274

[34] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–522, Jun. 1996.
[Online]. Available: https://doi.org/10.1038/381520a0

[35] S.-C. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proc. 23rd Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2018, pp. 751–766. [Online]. Available:
https://doi.org/10.1145/3173162.3173191

[36] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” 2016. [Online].
Available: http://arxiv.org/abs/1610.03295.

[37] Meet the Cruise AV: The First Production-Ready Car With
No Steering Wheel or Pedals, General Motors, Detroit, MI,
USA, 2018. Accessed: Jan. 25, 2018. [Online]. Available:
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/ne
ws/us/en/2018/jan/0112-cruise-av.html

[38] L. Wang, Q. Zhang, Y. Li, H. Zhong, and W. Shi, “Mobileedge:
Enhancing on-board vehicle computing units using mobile edges for
CAVs,” in Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS),
Tianjin, China, 2019, pp. 470–479.

[39] M. Quigley et al., “ROS: An open-source robot operating system,” in
Proc. ICRA Workshop Open Source Softw., vol. 3, 2009, p. 5.

[40] S. Xiong, Q. Ni, L. Wang, and Q. Wang, “SEM-ACSIT: Secure and effi-
cient multiauthority access control for IoT cloud storage,” IEEE Internet
Things J., vol. 7, no. 4, pp. 2914–2927, Apr. 2020.

[41] R. Schuster, V. Shmatikov, and E. Tromer, “Situational access con-
trol in the Internet of Things,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2018, pp. 1056–1073. [Online]. Available:
http://doi.org/10.1145/3243734.3243817

[42] T. Khalid et al., “A survey on privacy and access control schemes in
fog computing,” Int. J. Commun. Syst., p. e4181, Oct. 2019. [Online].
Available: https://doi.org/10.1002/dac.4181

[43] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the Internet of Things,” IEEE Internet
Things J., vol. 6, no. 2, pp. 1594–1605, Apr. 2019. [Online]. Available:
https://doi.org/10.1109/JIOT.2018.2847705

[44] Y. Zhang, D. Zheng, and R. H. Deng, “Security and privacy in smart
health: Efficient policy-hiding attribute-based access control,” IEEE
Internet Things J., vol. 5, no. 3, pp. 2130–2145, Jun. 2018.

[45] M. A. Habib et al., “Security and privacy based access con-
trol model for Internet of connected vehicles,” Future Gener.
Comput. Syst., vol. 97, pp. 687–696, Aug. 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.02.029

[46] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the robot operating system,” Robot.
Auton. Syst., vol. 98, pp. 192–203, Dec. 2017. [Online]. Available:
https://doi.org/10.1016/j.robot.2017.09.017

[47] B. Breiling, B. Dieber, and P. Schartner, “Secure communication
for the robot operating system,” in Proc. Annu. IEEE Int. Syst.
Conf. (SysCon), Montreal, QC, Canada, Apr. 2017, pp. 1–6. [Online].
Available: https://doi.org/10.1109/SYSCON.2017.7934755

[48] R. White, H. I. Christensen, and M. Quigley, “SROS: Securing ROS
over the wire, in the graph, and through the kernel,” 2016. [Online].
Available: http://arxiv.org/abs/1611.07060.

[49] D. Ferraiolo, V. Atluri, and S. Gavrila, “The policy machine:
A novel architecture and framework for access control policy
specification and enforcement,” J. Syst. Archit., vol. 57, no. 4,
pp. 412–424, 2011. [Online]. Available: http://www.sciencedirect.com
/science/article/pii/S1383762110000251

Qingyang Zhang (Graduate Student Member,
IEEE) received the B.Eng. degree in computer sci-
ence and technology from Anhui University, Hefei,
China, in 2014, where he is currently pursuing the
Ph.D. degree.

His research interests include edge computing,
computer systems, and security.

Hong Zhong (Member, IEEE) was born in
Anhui, China, in 1965. She received the Ph.D.
degree in computer science from the University of
Science and Technology of China, Hefei, China,
in 2005.

She is currently a Professor and a Ph.D.
Supervisor with the School of Computer Science
and Technology, Anhui University, Hefei. She
has over 120 scientific publications in reputable
journals, such as the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING, the
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, the IEEE
TRANSACTIONS ON BIG DATA, and the IEEE INTERNET OF THINGS

JOURNAL, academic books, and international conferences. Her research
interests include applied cryptography, IoT security, vehicular ad hoc network,
cloud computing security, and software-defined networking.

Jie Cui (Member, IEEE) was born in Henan,
China, in 1980. He received the Ph.D. degree from
the University of Science and Technology of China,
Hefei, China, in 2012.

He is currently a Professor and a Ph.D.
Supervisor with the School of Computer
Science and Technology, Anhui University,
Hefei. He has over 100 scientific publica-
tions in reputable journals, such as the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, the IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS, the IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, the IEEE TRANSACTIONS ON EMERGING

TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS, and the IEEE INTERNET OF THINGS JOURNAL, academic books,
and international conferences. His current research interests include applied
cryptography, IoT security, vehicular ad hoc network, cloud computing
security, and software-defined networking.

Lingmei Ren received the Ph.D. degree from
the Department of Electronic and Information
Engineering, Tongji University, Shanghai, China,
in 2016.

She was a Visiting Scholar with Wayne State
University, Detroit, MI, USA, in 2012. She is
currently with the School of Computer Science,
Shenzhen Institute of Information Technology,
Shenzhen, China. Her main research interests
include fall detection, human behavior recognition,
wireless health, and edge computing.

Weisong Shi (Fellow, IEEE) received the B.S.
degree in computer engineering from Xidian
University, Xi’an, China, in 1995, and the Ph.D.
degree in computer engineering from the Chinese
Academy of Sciences, Beijing, China, in 2000.

He is a Charles H. Gershenson Distinguished
Faculty Fellow and a Professor of computer science
with Wayne State University, Detroit, MI, USA. His
research interests include edge computing, computer
systems, energy efficiency, and wireless health.

Prof. Shi is a recipient of the National Outstanding
Ph.D. dissertation Award of China and the NSF CAREER Award. He is an
ACM Distinguished Scientist.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 08:28:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

