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Abstract—Edge computing is a promising paradigm that push-
es computing, storage, and energy to the networks’ edge. It
utilizes the data nearby the users to provide real-time, energy-
efficient, and reliable services. Neural network inference in edge
computing is a powerful tool for various applications. However,
edge server will collect more personal sensitive information of
users inevitably. It is the most basic requirement for users to en-
sure their security and privacy while obtaining accurate inference
results. Homomorphic encryption (HE) technology is confidential
computing that directly performs mathematical computing on
encrypted data. But it only can carry out limited addition and
multiplication operation with very low efficiency. Intel software
guard extension (SGX) can provide a trusted isolation space in
the CPU to ensure the confidentiality and integrity of code and
data executed. But several defects are hard to overcome due
to hardware design limitations when applying SGX in inference
services. This paper proposes a hybrid framework utilizing SGX
to accelerate the HE-based convolutional neural network (CNN)
inference, eliminating the approximation operations in HE to
improve inference accuracy in theory. Besides, SGX is also taken
as a built-in trusted third party to distribute keys, thereby
improving our framework’s scalability and flexibility. We have
quantified the various CNN operations in the respective cases
of HE and SGX to provide the foresight practice. Taking the
connected and autonomous vehicles as a case study in edge
computing, we implemented this hybrid framework in CNN to
verify its feasibility and advantage.

Index Terms—edge computing; neural network inference;
privacy-preserving; Intel SGX; homomorphic encryption.

I. INTRODUCTION

Smart devices are increasingly deployed in our daily life.
They are designed to continuously collect data to bring us
better services [1]. Neural network is a practical approach
to produce inference services with data generated by the
above devices for application, such as image processing,
face recognition, medical treatment, and behavior analysis in
different domains [2]. As a matter of course, the centralized
computing paradigm that uploads all data to the cloud for
neural network inference will cause communication conges-
tion, increase latency, and aggravate the energy dissipation of
smart devices [3, 4]. Edge computing is a promising paradigm
that pushes computing, storage, and energy to the edge of the
network where data is generated [5]. It can provide neural
network inference services with low latency, stable bandwidth,
and high reliability. Nevertheless, users must upload their
privacy information actively to edge servers to obtain accurate

inference services. Meanwhile, the edge server is closer to
the smart devices in the internet of everything compared
with the cloud computing center in the core network, so
it will collect more personal sensitive information of users
inevitably. Therefore, the neural network inference in the edge
server is more urgent to protect privacy. Taking the connected
and autonomous vehicles (CAVs) scenario as an example in
edge computing, the car no longer is a simple means of
transportation but will evolve into a sophisticated computer on
wheels with the continuous increase of on-board sensors and
corresponding services provided [6, 7]. CAVs have become the
ideal mobile edge computing servers obviously for providing
smart devices with complex neural network inference appli-
cations. However, the works [8] have already mentioned that
collecting personal and terminal data in autonomous driving
will leak privacy to service providers and car manufacturers
while providing better services. To attract more and more
companies and users to adopt their inference application
products with confidence, the edge service providers should
design corresponding solutions and implementation plans for
privacy leakage problems to eliminate users’ security and
privacy concerns.

Homomorphic encryption (HE) based neural network ap-
proaches enable data owners to send encrypted data to edge
servers. The service providers directly perform neural network
inference on encrypted data and return results in the ciphertex-
t [9]. Since plaintext information has never appeared, security
and privacy are protected while accessing HE-based inference.
But HE has several operations that cannot be calculated
directly, and the computational efficiency is remarkably low. In
the inference process of convolutional neural network (CNN),
non-polynomial functions, such as Sigmoid and ReLU, need to
be approximated by polynomials that will cut down the infer-
ence performance drastically and reduce its accuracy [10, 11],
so there is a tradeoff between accuracy and computational cost.
Meanwhile, a trusted third party is introduced to distribute
various keys during the inference preparation stage with HE.

Software guard extension (SGX) proposed by Intel provides
a trusted execution environment, which can provide chip-
level security for the integrity and confidentiality of data and
code in the unreliable environment [12]. With SGX, appli-
cations can run in a container called enclave, which shields
potentially compromised software from malware and even
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privileged software, like operating systems, hypervisor, etc. As
a hardware-based protection technology, SGX can effectively
and efficiently ensure neural network algorithms’ confidential
execution. However, it is challenging to execute a large-scale
network inference task alone due to hardware limitations.
Enclave has only limited memory. Thus the pages need to
be swapped in and out frequently when the network scale
becomes more extensive, which increases the system overhead
to guarantee the integrity and confidentiality of the pages [13].
Because SGX is in user mode, it cannot implement some
functions by itself and needs to interact with the untrusted
operating system in neural network preference services. This
behavior will increase security risks and expand side-channel
attacks that SGX cannot resist by itself [14]. Furthermore, it
has a high economic cost as an exclusive hardware resource.

In the process of using SGX for CNN inference, the
introduction of HE can reduce some dangerous behaviors
that only use SGX in a large-scale network inference task.
Simultaneously, SGX can substitute the part that cannot be
calculated directly in HE-based inference to cut down the
approximate behaviors. Therefore, we propose this hybrid
framework combining HE and SGX to conduct neural net-
work inference in confidential. The proposed framework im-
proves accuracy theoretically and enhances the efficiency and
throughput of HE-based inference as much as possible. Such a
continuum of cryptographic schemes and hardware technology
ensures the confidentiality and privacy of users’ data. The main
contributions of this work are as follows.

• We proposed a hybrid CNN inference framework that
utilizes SGX to accelerate HE-based inference by re-
ducing the approximation operations in HE. The ac-
curacy and throughput of the HE-based inference can
be improved theoretically. SGX distributes keys directly
to avoid introducing an additional trusted third party,
thereby improving the scalability and flexibility.

• We quantified the running time of some basic HE oper-
ations in the CNN inference process and compared them
with corresponding operations in SGX. We also tested
and analyzed each layer’s performance in the framework
under HE and SGX, respectively, to summarize their char-
acteristics and advantages. This work provides a forward-
looking comparative analysis for the combination of HE
and SGX in CNN.

• Considering the application scenario of CAVs in edge
computing, we implemented and evaluated our hybrid
inference framework in an elaborated CNN model, which
contains most of the typical operations. Our scheme
reduces 39.615% of the inference time compared to
the pure HE-based scheme while maintaining network
prediction accuracy.

The rest of this paper is organized as follows. In Section II,
we presented the background knowledge. Some shortcomings
of the previous schemes constituted problem statement in
Section III. We propose our hybrid neural network inference
framework combining HE and SGX in Section IV. Section

V discusses experiment conditions and analyze measurement
methodology. We measured and analyzed the experimental
data of different operations in the framework to summarize
its characteristics and advantages in Section VI. Section VII
implemented a case study of CAVs using a CNN model in
edge computing. We discussed the problems and challenges
revealed by the experiment in Section VIII. Section IX sur-
veyed the related works. We concluded in Section X.

II. BACKGROUND

A. Neural Networks

Neural Network is a class of machine learning algorithms
using multiple layers to extract higher-level features from the
raw input progressively. CNN is a specific kind of neural
network algorithms. Typically, a CNN consists of several con-
volutional layers, pooling layers, fully connected layers, and
activation layers to extract features and obtain the inference
results.

1) Convolutional Layer: The convolution operation is
widely used in image processing, and it can be regarded as a
feature extraction method independent of each pixel’s position.
Different convolution kernels can learn different features,
such as edge, line, and corner, of each pixel in a picture,
successively. Typically, the convolutional layer operations are
linear, only including addition and multiplication with model
parameters.

2) Pooling Layer: The pooling layer is also called the
downsampling layer, which is sandwiched between continuous
convolutional layers. It compresses the feature maps by cutting
down the data dimension and parameters and reduce overfitting
phenomenons. The most common pooling functions of the
pooling layer include max-pooling and mean-pooling. The
max-pooling outputs the maximum of a kernel sub-area. The
mean-pooling outputs the average of a kernel sub-area.

3) Fully Connected Layer: Each neuron of the fully con-
nected layer is linked to each neuron of the last layer with
a weighted sum. It plays the role of a classifier in the entire
CNN. The convolutional layer, pooling layer, and activation
layer goals are to represent the original data to the feature
space. The fully connected layer is to map the feature repre-
sentation to the label space. Its specific operation is the same
as the operation of the convolutional layer. This reduces the
influence of feature location on classification significantly.

4) Activation Layer: If every processing layer used in
the network is linear, then the multi-layer neural network
has only linear mapping capabilities. Thus, a neural network
containing merely convolutional layers and fully connected
layers can only classify the linear recognition tasks [10]. In
this case, an activation layer is used to realize non-linear
function achieving the purpose of non-linear mapping. There
are several activation such as Sigmoid (σ(x) = 1

1+e−x ), Relu
(f(x) = max(0, x)), Tanh (tanh(x) = ex−e−x

ex+e−x ) and Leaky
Relu (f(x) = max(αx, x)) function in practice.
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B. Homomorphic Encryption

Homomorphic encryption belongs to the field of cryptogra-
phy. Since HE supports the ability to perform calculations such
as addition and multiplication over the encrypted data space
without decryption, there is an excellent application demand.
We will use Fan-Vercauteren (FV) [15] in this paper, and other
HE schemes are available in the same way.

The ring Za[x]/(xn + 1) is represented as Ra where the
coefficients reduced modulo is a and n is a power of 2. The
plaintext space is taken as Rt for integer t is called plaintext
modulus. The ciphertext space is the ring Rq which q is
coefficient modulus. The error distribution X is a truncated
discrete Gaussian distribution, e ← X to denote that e is
sampled uniformly from X . Let ∆ = bq/tc and q = ∆t+rt(q)
where rt(q) = q mod t. The letter w is a base into which
ciphertext elements are decomposed during relinearization.
Let λ be the security parameter. We mainly use seven algo-
rithms that including SecretKeyGen, PublicKeyGen, Encrypt,
Decrypt, Add, Multiply and EvaluationKeyGen to generate
homomorphic computing code in our framework.
• SecretKeyGen(1λ): sample s← X and set sk = s.
• PublicKeyGen(sk): set s = sk, sample a← Rq , e← X

and output pk = (p0,p1) = ([−(as + e)]q,a).
• Encrypt(pk,m): For m ∈ Rt, sample u, e1, e2 ← X and

output

ct = (c0, c1) = ([p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q).

• Decrypt(sk, c): set s = sk, compute[⌊
t · [c0 + c1 · s]q

q

⌉]
t

.

• Add(ct0, ct1): output

([ct0[0] + ct1[0]], [ct0[1] + ct1[1]]).

• Multiply(ct0, ct1): output

c0 =

[⌊
t · ct0[0]ct1[0]

q

⌉]
q

,

c1 =

[⌊
t

q
(ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q

,

c2 =

[⌊
t · ct0[1]ct1[1]

q

⌉]
q

.

• EvaluationKeyGen(sk, w): The relinearization key is gen-
erated by w and sk, which is used for relinearization after
multiplication to reduce the noise and ciphertext size so that
it can be decrypted correctly.

III. PROBLEM STATEMENT

A. Homomorphic-enabled Neural Network Inference

HE enables data owners to send encrypted data to the
edge servers. The service providers can perform neural net-
work inference on the encrypted data directly without any
information about plaintext in the entire process and then
return the inference results in encrypted form. This HE-based

Fig. 1: HE-based neural network inference with a trusted third party.

inference can achieve the purpose of protecting the security
and privacy of user’s input queries. Fig. 1 illustrates the model
of exchange information data flows between different entities
in the HE-based inference. Users decrypt the results to obtain
what they want using the private key acquired from a trusted
third party in advance. Since HE only supports a limited type
of calculations and needs to get the available keys before
starting service, so there are the following implementations
and problems.

Trusted third party. Users and the edge server need to use
a trusted third party as traditional public key infrastructure
(PKI) to issue homomorphic keys and parameters in advance.
This is a strong hypothesis, which is to the disadvantage
of providing flexible services for users. It is challenging to
find a wholly trusted third party in a practical environment.
The communication process also increases the probability of
eavesdropping and tampering in the keys distribution process.

Convolutional layers and fully connected layers. They
are all linear layers and have similar essential operating
characteristics, and they can be disassembled into operations
that contain multiplication and addition merely. These are op-
erations directly supported by fully homomorphic encryption.

Pooling layers. Comparing and seeking the maximum value
or obtaining the average value in the pooling layers are not di-
rectly supported by the homomorphic algorithms. So the scaled
mean-pooling function that is obtaining the summation of a
sub-area is being used to replace mean-pooling. Summation
computing is easy to calculate over encrypted data. The only
effect is to magnify the output value of this layer several times,
which then propagates to the next layer [16]. Actually, this
kind of numerical diffusion does not exist in the traditional
polling layers, which is a necessity to be considered.

Activation layers. The functions used in the activation
layers are all non-polynomial to acquire the ability to solve the
non-linear tasks of neural network. There is no excellent way
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to calculate them directly in encrypted form, which only can
utilize high-order polynomials with addition and multiplication
to fit the trend of its curve or even look up the table to
get complex activation function results. These approximate
behaviors are at the expense of cutting down the inference
performance drastically and reduce its accuracy [10, 11].

Relinearization. As shown in the FV scheme in Section
II-B, if there are the operations of Multiply(ct0, ct1) in the
CNN, the ciphertext size will be larger, and the noise will
increase exponentially. This will easily beyond the scope of
the ciphertext space so that it cannot be decrypted correctly. In
HE-based inference, the relinearization is needed to reduce the
size of the ciphertext and noise, then ensure that the ciphertext
is decrypted correctly. This needs EvaluationKeyGen(sk, w)
to generate relinearization keys. The process requires private
key information, which must be produced by the trusted third
party in advance and sent to the edge server.

B. SGX-enabled Neural Network Inference

The computation in SGX has excellent efficiency and preci-
sion. The attestation allows the remote users to gain confidence
that the intended software is running within an enclave on an
Intel SGX enabled platform [17]. If the edge server’s CPU has
the function of SGX, the simplest method is to put the CNN
inference into the enclave for computing. But many problems
make it unsuitable for excessive or complete use in neural
network inference scenarios.

Limited memory. The edge server may have different
neural network models for different recognition tasks. The
various parameters will be exploded when the network scale
increases sharply, and the memory occupied by model storage
will increase accordingly. The available physical memory of
the enclave is too small. Due to the beginning of the paging
and exchanging page, it will cause significant performance
degradation.

Side-channel attacks. Because enclave is in user mode, it
cannot execute some functions by itself and needs to interact
with untrusted operating systems [14]. The exchanging page
caused by the small memory mentioned above exactly is a
behavior pattern that can be analyzed to become a kind of
side-channel attacks [18].

Charges. SGX is a CPU-based hardware security mecha-
nism, and its robust, trusted, and flexible security function is
guaranteed by the extended performance of the hardware. As
exclusive limited-resource hardware, leasing fees on the edge
server are also a consideration.

IV. OUR MODEL

We devise a hybrid neural network inference framework
of HE and SGX based on the analysis in Section III. The
purpose is to protect the security and privacy of the user’s
inquiry input. The inference framework avoids introducing an
additional trusted third party to distribute all kinds of keys
but relies on the build-in remote attestation function of Intel
SGX service system. And we utilize SGX to assist in the
computing of HE-based inference that is difficult to calculate

Fig. 2: Hybrid neural network inference framework of HE and SGX.

or needs to be approximated. Fig. 2 illustrates the proposed
hybrid framework, which is elaborated as follows.

A. Keys Distribution

The process of proving that the enclave has been established
in a secure hardware environment is referred to as remote attes-
tation [19]. This service is provided by Intel and implemented
by users using the open-source Intel SGX Data Center Attesta-
tion Primitives [20]. When we perform the remote attestation
during the set-up phase, the authentication report structure
can provide additional user data fields to deliver user-defined
information to support more complex interaction structures.
Therefore, we can generate the homomorphic parameters and
public/private keys in SGX and send public/private to users
as customized data. In this way, we can avoid introducing an
additional trusted third party into the edge service provider
system to distribute keys and homomorphic parameters.

B. Model Weight Parameters Encoding

The inference model is the network structure and weight
parameters essentially. We assume that the CNN model pa-
rameters have been deployed in the edge server securely after
model training or other economic transactions. Because of the
service company’s reputation and interests, there is no need
to tamper with the parameters of the original model with
good performance. Before the edge server starts homomorphic
computing, the homomorphic parameters must be obtained
from SGX ahead of time. The model weight parameters can
be encoded in the homomorphic plaintext space and enabled
to perform corresponding homomorphic computing outside
SGX. This encoded behavior is completed once and used
permanently before the service update requires the network
to be retrained.
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C. Homomorphic Computing outside SGX

After users obtain the homomorphic public/private key, the
public key is used to encrypt the data to be inquired and
submitted to the edge server. The service provider performs
homomorphic computing outside SGX for linear computing,
such as convolutional layers and fully connected layers. These
are performed in the untrusted part, and the model parameters
are involved in the calculation. In this way, we can avoid trans-
ferring model parameters to SGX to reduce some dangerous
behaviors such as too frequent memory access, exchanging
pages, and interaction between internal and external to cut
down the side-channel attacks of using SGX.

D. Plaintext Computing in SGX

According to the analysis of each layer in HE-based in-
ference, activation layers and pooling layers do not require
parameter weights, and the non-linearization degree of them is
awfully high that needs homomorphic approximation. Putting
them into SGX to decrypt, conduct plaintext-like computing,
then homomorphically encrypt the results to perform the
successive homomorphic computing outside of SGX. This can
accelerate the HE-based inference with the slightest extension
of the dangerous behavior of side-channel attacks. And the
non-polynomial functions accurately executed, thereby im-
proving the inference accuracy theoretically.

E. Relinearization

In the ciphertext computing phase outside SGX, if there
is a ciphertext multiplication that requires relinearization and
noise reduction, it can be passed into SGX to decrypt and re-
encrypt, which removes the noise accumulation in the cipher-
text naturally. Usually, the evaluating party needs to inform
the key generating party in advance whether they need to
relinearize, which requires several communication processes.
But in this way, we can thoroughly avoid introducing an
additional trusted third party to generate relinearization keys
to the edge server, thereby improving the scalability and
flexibility of the proposed framework.

V. IMPLEMENTATION

A. Prototype Implementation

We have implemented our hybrid HE and SGX CNN
inference framework using C++ language based on the Intel
SGX driver 2.5.0, the Intel SGX SDK 2.6.100, and the
homomorphic library SEAL 2.1 [21]. The selection of HE
scheme parameters are polynomial x1024 + 1 and plaintext
modulus t = 4. The coefficient modulus q is optimized and
selected automatically by the function ChooserEvaluator ::
default parameter options().at(1024) provided by the li-
brary.

B. Measurement Analysis

We quantified the time consuming of some basic HE op-
erations in the CNN inference process and compared them
with corresponding operations in SGX. We also evaluated the

performance and characteristics of each layer in the frame-
work. There are many users at any time in edge application
scenarios, and the neural network structure we built makes
it possible to predict batchSize encrypted images at a time.
We set batchSize = 10 in the experiment, which increases
the throughput and processing speed of inference. We used
Cryptonets [16] as the HE-based CNN inference scheme to
compare.

VI. EVALUATION

The performance of our framework is evaluated on an
SGX-enabled computer, which has an Intel Xeon CPU E3-
1225 v6@3.30GHz with four cores, and the operating system
version is Ubuntu 16.04.6 LTS 64-bits.

A. Encoding/Decoding and Encryption/Decryption

Keys generation. SGX replaces the function of a trusted
third party, generates homomorphic public keys and private
keys, then transmits them to users through the remote attesta-
tion. TABLE I quantifies the difference in the process of gen-
erating a pair of public/private keys. The generation time was
measured 1000 times inside and outside SGX, respectively,
and the same parameters and key generation procedure plus the
time assigned to the global variables. The only difference is the
execution environment. The experimental results demonstrate
that generating a pair of homomorphic public/private keys in
SGX will bring more average time cost of 29.392ms . We also
measured the time it takes to call the ecall generate key()
outside SGX. Most of the time is the same as the time
measured in the enclave, and a few will be 1ms longer on
the millisecond scale. This is the time consumed by entering
and exiting SGX. The standard deviation (STD) and the 96%
confidence interval (CI) also show that the performance of
generating a pair of public/private keys measured in SGX is
less stable than the outside.

Average STD 96% CI

Inside SGX 49.593 3.448 [49.054, 50.132]
Outside SGX 20.201 0.774 [20.062, 20.341]

TABLE I: A pair of public/private keys generation time (/ms).

Image encryption. Each pixel of the image is encoded into
a polynomial in the plaintext space and encrypted into the
ciphertext space. The time of image encoding and encryption
are counted once every batchSize and repeated 1000 times.
The statistic data of the encoding and encryption time of
batchSize images are shown in TABLE II. The average time is
157.013s. The STD and the 96% CI indicating that the results
of our experimental data are stable. Therefore, the time cost
to encode and encrypt an image is about 15.7s.

batchSize Average STD 96% CI

10 157.013 1.613 [156.409, 157.617]

TABLE II: Image encoding and encryption time (/s).
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(a) Fixing the number of kernels, changing kernel size

(b) Changing the number of kernels and kernel size

Fig. 3: The time of weights coding against its number.

Weight parameters encoding. The model is obtained when
the weights are generated through training. The edge serv-
er can encode the weights in advance that be regarded as
preliminary work. The weights are divided into the value of
kernels and bias. The number is related to the kernel size
and the number of kernels, respectively. As shown in Fig.
3(a), fixing the number of kernels is 11 and 26 respectively,
changing the kernel size causes the number of weights to
change correspondingly. It can be seen that the encoding time
has a linear relationship with the weights’ number. In Fig. 3(b),
changing the size and number of kernels simultaneously, their
encoding time is still linear. The conclusion is that apart from
the number of weights that need to be encoded, the encoding
time is hardly affected by other factors.

Inference results decryption. After the edge server com-
pletes the CNN prediction, it obtains the encrypted results,
which need to be transmitted to the requesting user. The user
gets the encrypted result and decrypts it using the private key
to get the solicited plaintext inference result. We have counted
the inferences of batchSize images, and an image inference
generates 10 homomorphic data. The statistical experiment
data are in TABLE III. There are a total of 100 homomorphic
data that need to be decrypted and decoded. The process is
looped 100 times. The average decryption and decoding time
of each image inference result is 6.2391ms. We also measured
the average time cost of performing an Encoding + Encryption
or Decoding+Decryption in TABLE IV, then compared them
with the same operations outside SGX on the millisecond
scale. Encoding and encryption in SGX bring an average extra
cost of 6.042 ms, decryption and decoding in SGX bring a
delay of 4.882 ms.

batchSize Average STD 96% CI

10 62.391 0.941 [61.962, 62.821]

TABLE III: Decryption and decoding of batchsize image inference
results (/ms).

Encoding+Encryption Decoding+Decryption

Inside SGX 18.167 ms 5.250 ms
Outside SGX 12.125 ms 0.368 ms

TABLE IV: An Encoding+Encryption time vs. a Decod-
ing+Decryption time inside and outside SGX respectively.

B. Kernel Size and Homomorphic Convolution

The essence of convolutional layers and fully connected
layers are convolutional computing. It can be calculated by
HE outside SGX in our framework. This section conducts
a time analysis on the relationship between a homomorphic
convolution and its kernel size. As can be seen from Section
II-A, convolution consists of multiplication and addition op-
erations only. For a feature map, different convolution kernel
sizes will lead to different code loop jumps structure and the
number of multiplication and addition, resulting in different
time delays. We take a 28× 28 feature map as input, and the
kernel size ranges from 1 × 1 to 28 × 28 with an interval of
1. The simplified expression is 1 to 28 in the abscissa of Fig.
4, and the convolution stride is 1. The blue line is the number
of ciphertexts multiplied by plaintexts (C ×P ) or ciphertexts
added by ciphertexts (C +C) in the convolution of a feature
map.

Fig. 4 shows that the kernel size of 14 and 15 is the axis
of symmetry to get the maximum number of calculations
of 44100 times. The kernel on both sides are symmetrical
to produce the same number of C × P and C + C, so
it should take equal time to calculate, but the small kernel
cause more calculation delays than the large kernel, obviously.
When kernel size is 14 or 15, the same calculation number
is 44100, but it causes a time difference of 0.757s. This
time-consuming phenomenon is more serious when it goes
to both sides, according to the red line. When the kernel size
is 1 and 28, there is a time difference of 15.855s, which is
16.66× the time of the entire convolution when the kernel
size is 28. So this extra time-consuming is a multiple of
the calculation itself. This is because the small kernel enters
the internal homomorphic version of the loop structure more
times than the large kernel of the same calculative operation.
The homomorphic computing is much slower, making this
difference too significant, and even this effect is dominant
for the computing time to some extent. This time-consuming
effect brought by the homomorphic convolution loop structure
cannot be ignored when using homomorphic convolution.

C. SGX and Sigmoid

To calculate the highly non-polynomial activation function
accurately and quickly, we put it into SGX for computing. We
use Sigmoid as the representative of the activation function.
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Fig. 4: Homomorphic convolutional time and the different number
of C × P/C + C calculations with different kernel size.

The secondary axis in Fig. 5 represents the number of
calculations, which is the number of feature values to perfor-
m the nonlinear mapping. The primary axis is the activation
calculation time of a feature map.

Square computing is used as the function of Sigmoid in HE-
based CNN inference, and the ciphertext is relinearized after
multiplication. The calculation time of EncryptSigmoid is
the red line. The calculated time of SGX is expressed as the
yellow line of SGXSigmiod, which contains intact variable
assignment, ciphertext loading, encryption, decryption, and
function computing. The green one of FakeSGXSigmoid
indicates the time it takes to execute code outside SGX
that the same as in enclave. It can be seen that the more
amount of calculations give rise to the more severe time-
consuming. Even though the computation in enclave reveals
an increment from 34ms to 5.62s more than the outside
time, it still has a significant time advantage from 190ms to
37.431s than the encrypted one. This shows the efficiency
of putting the activation function into SGX for calculation.
Many researchers propose fitting the activation function with
a higher-order polynomial to obtain more accurate results,
which will obviously bring more significant computational
cost. There is a tradeoff between accuracy and efficiency, and
SGX enables the calculation of diverse activation functions
(e.g., Relu and Tanh) flexibly, accurately, and quickly.

D. SGX and Pooling

To use the original classic pooling function in HE-based
inference, we put it into SGX to calculate, and our pooling
implementation is mean-pooling. We set the input feature map
size of the pooling layer to 24.

The line graph based on the secondary axis of Fig. 6
represents the size of the feature map input to SGX for
computation. The size of the feature map represents the
number of calculations that need to be processed. There are
two situations,

Fig. 5: Sigmoid computing time with/without SGX. The blue line
in the second legend indicates the number of Sigmoid calculations in
a feature map, and the three colored lines in the first legend indicate
the Sigmoid computing time of a feature map.

• SGXDiv: Use HE to calculate the addition of the pool-
ing window (kernel), so the new feature map obtained
will become smaller, and then input it to SGX to calculate
the nonlinear division to obtain the mean value.

• SGXPool: Input the feature map into SGX directly, and
calculate the addition and division to get the mean value.
Therefore, regardless of the pooling window size, the size
of the feature map input to SGX is 24.

The histogram based on the primary axis of Fig. 6 counts the
time of four groups under the condition of changing the polling
window size. The statistical time includes the entire variable
assignment, ciphertext loading, encryption, decryption, and
computation. We set FakeSGXDiv and FakeSGXPool for
comparing the time loss induced by SGX itself. There are the
following four groups,

• SGXDiv: To find the mean value of the pooling window,
the time of homomorphic addition EncryptedSum plus
the time of division in SGX SGXDivide.

• FakeSGXDiv: The time to execute code outside SGX
that the same as SGXDiv, which are EncryptedSum
plus FakeSGXDivide.

• SGXPool: To find the mean value of the pooling win-
dow, the time of addition and division in SGX.

• FakeSGXPool: The time to execute code outside SGX
that the same as SGXPool.

The overall tendency is that the larger the window size, the
less the amount of calculations and the less time required.

Comparing SGXPool and FakeSGXPool, we can ob-
serve that SGXPool takes more time from about 1.644s
to 1.752s than FakeSGXPool when the window size be-
comes larger. At the same time, the time of SGXDiv and
FakeSGXDiv has been reduced to a level that can be
ignored. And SGXDivide is also slow when the window
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Fig. 6: Pool computing time with/without SGX. The line of the
right legend indicates the size of the feature map input to SGX. The
histogram of the left legend indicates the different computing time
of a feature map pooling.

size is small, but it only takes more 4ms to 68ms than
FakeSGXDivide when the window size comparatively large.
This is because the number of calculations that need to be
divided in SGX has been reduced exponentially after the
homomorphic window addition, like the red line trend in
Fig. 6. And the degree of this reduction increases with the
larger window size. Nevertheless, SGXPool has a fixed input
feature map size like the green line that needs to be decrypted
to process in SGX. SGXDivide also has many decryption
operations when the window size is small. Combined with the
extra time-consuming of the decryption in SGX in TABLE
IV, we can explain the phenomenon that the large time gap
between SGXDivide and FakeSGXDivide when using
small window size, and the time of SGXPool does not
decrease significantly when using large window size.

The time consumption of SGXDiv is less than the
SGXPool after the window size is greater than 3. Conse-
quently, we can choose SGXPool when the window size is
less than 3 and select SGXDiv when the window size is
larger. Thus we avoid the decryption and decoding time in
SGX is even longer than the homomorphic calculation itself.
This is a delay trade-off between SGX decryption and direct
homomorphic calculation. Therefore, we can combine HE and
SGX to achieve the highest pooling layer computing efficiency.
Besides, we obviously can only use SGX to perform max-
pooling in our scenario.

E. Relinearization

Relinearization can reduce the noise and size of ciphertext
after the homomorphic multiplication so that the ciphertext
can be decrypted accurately. It is an important technique
to extend somewhat HE to fully HE. We count the time
of the relinearization, including the key generation and ex-
ecution. And re-encryption after decryption directly in SGX
can avoid calling the relinearization function. We also call
ecall DcreaseNoise() outside SGX to testify that the time
consumption caused by entering and exiting SGX can be
ignored in the millisecond.

Average STD 96% CI

Reline 65.216 1.472 [64.472,65.928]
SGX 95.55 2.459 [94.335, 96.765]

TABLE V: A relinearization computing time and SGX noise reduc-
tion time (/ms).

TABLE V denotes that the average time of an SGX noise
reduction is about 95.55ms, the average time of relinearization
is about 65.216ms, and the efficiency of SGX is slower by
30.334ms. However, we can import the ciphertexts that need
noise reduction in a batchSize, so one entry and exit of
SGX is required only, and the encryption and decryption keys
merely need to be loaded once. We get the average time
consumption of 23.429ms for each SGX noise reduction,
which is mainly occupied by encryption and decryption in
SGX. Therefore, the effectiveness of the noise reduction
method using SGX is satisfactory. TABLE V also shows that
the performance of relinearization measured in SGX is less
stable than the outside.

VII. CASE STUDY IN EDGE COMPUTING

The vehicle has become a mobile computing device on
wheels and the users in CAVs will generate more complex
application requirements, such as association recommendation,
image recognition, and interest prediction. Portable smart de-
vices often provide multiple services simultaneously under the
constraints of computing resources and energy consumption
[22]. Therefore, the neural network inference that expends
computing power can be naturally offloaded to the CAVs as
the edge computing servers for execution. Nevertheless, it will
leak the most sensitive personal information (e.g., images,
messages, and browsing history) to service providers and car
manufacturers. In the case of using HE to protect the security
and privacy of user’s data, the ciphertext is transmitted to the
edge server. We fed homomorphic encrypted images into our
hybrid framework to simulate such a service process using a
desktop. The MNIST dataset [23] of handwritten digits from
“0” to “9” can be used for training and testing. It has a training
set of 60000 samples and a test set of 10000 samples, and
the resolution of each image is 28×28 that is represented
by its grey level in the range of 0∼255. This will show
our framework’s feasibility and superiority to provide reliable
inference tasks with encrypted information assigned to the
edge server, comparing with HE-based inference on CAVs.
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Fig. 7: CNN Model

Input Feature Maps Layer Stride Kernel Output Feature Maps
1× (28× 28) Convolutional Layer (1× 1) 6× (5× 5) 6× (24× 24)
6× (24× 24) Sigmoid / / 6× (24× 24)
6× (24× 24) Pooling Layer / 6× (2× 2) 6× (12× 12)
6× (12× 12) Fully Connected Layer / 10× (12× 12) 10× (1× 1)

TABLE VI: Every layer operation of the CNN model

A. CNN Model

We build the CNN architecture in Fig. 7, which is similar
to the network structure in [16]. So we can easily compare
it with HE-based CNN inference. This network includes the
convolutional layer, pooling layer, activation layer, and fully
connected layer at the same time. The following combines the
four layers CNN model described in Fig. 7 and TABLE VI
specifically. Input a 28×28 MNIST handwritten digital image
as an example. There is a detailed analysis of every layer.

1. The first layer is a convolutional layer that has the kernels
of size 5×5 and a map count of 6 recorded as 6×(5×5),
each kernel and image performs a convolution operation
with a stride of (1×1), generating 6× (24×24) feature
maps.

2. The second layer is an activation layer, using the classic
Sigmoid activation function. Input 6 × (24 × 24), the
function mapping output 6× (24× 24) feature maps.

3. The third layer is a pooling layer, the pooling window
size is 6× (2×2), and the mean-pooling method is used
to output the average value of the kernel size to generate
6× (12× 12) feature maps.

4. The last layer is a fully connected layer. Input 6× (12×
12), generate kernels 10× (12× 12) that the same size
as the input feature map and the same number of output
categories automatically. Then, kernels convolve with
input feature maps to output 10 categories.

Making use of this elite network, We implement our hybrid
inference framework to prove its feasibility and verify that it
has significant advantages over a HE-based inference scheme
in edge computing.

B. Experiment Results

When the edge server has stored the encoded weight pa-
rameters and receives the homomorphically encrypted image
request from users and vehicles, the CNN inference service is

Fig. 8: Prediction time with/without SGX

started. Each batchSize predictions were counted once and
repeated 1000 times. All the accuracy rates are consistent
with the plaintext predictions, and no case has been found to
reduce the accuracy. In Fig. 8, we represent the HE-based CNN
inference as Encrypted to do a comparative experiment. Each
pixel enters the enclave to calculate as EncryptSGX(single),
which causes a delay of 152.5042s for each image that
did not match our expectation. The EncryptSGX(single)
control group will not be considered in our framework because
frequent accesses to SGX bring about huge time-consuming.
Whereafter, we use feature maps of batchSize as a unit
to process together to utilize SGX in our framework that
denoted EncryptSGX . Putting the same code outside of SGX
to compare the time-consumption of using SGX represented
EncryptFakeSGX .

Our framework implementation EncryptSGX has a pre-
diction time of 272.125s per image that saves 39.615% of the
time compared to the HE-based scheme Encrypted, the time
cost of SGX itself is 31.689s per image, it can be understood
from the above analysis that most of them are caused by the
time difference between the encryption and decryption inside
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and outside SGX. We can integrate our framework into the
vehicles as a third-party application for privacy-preserving
neural network inference. At the same time, our framework
is versatile and can also be used in other edge servers such as
roadside units and base stations.

VIII. DISCUSSION

The Chinese Remainder Theorem allows us to perform
Single Instruction Multiple Data (SIMD) operations that make
it possible to perform batch computing simultaneously, achiev-
ing a throughput of thousands of times for different parame-
ters. This operation is supported in the SEAL library directly.
In our experiments, we do not utilize the complex coding
of SIMD but perform quantitative analysis of the inference
operations only, so we should be aware of using SIMD will
make our running time shorter, throughput higher, and perform
better. Our encryption parameter is n = 1024, and if you use
SIMD technology, you can get 1024 times the throughput.
GPU can also be used to accelerate the homomorphic part in
our proposed framework that contains large-number element-
by-element modular multiplication [24].

HE is slow relatively, so it is challenging to build different
and huge network architecture arbitrarily in experiments to
make it compatible with SGX and homomorphic library simul-
taneously. Therefore, we use a well-designed small network
that contains most of the typical operations in four layers
to verify its feasibility and superiority. We quantitatively
analyze each of these steps to provide the foresight practice
of traditional encryption schemes mixed with trusted hardware
technology for neural network inference.

IX. RELATED WORK

In recent years, many works have been proposed to protect
the security and privacy of neural network applications in
different scenarios. The majority of existing methods take ad-
vantage of the traditional cryptographic algorithms, such as ho-
momorphic encryption [25], secure multiparty computing [26],
differential privacy [27] and Yao’s garbled circuit [28], to use
mathematical problems to ensure its reliability and confiden-
tiality. Besides, trusted computing technology [29] also can
be used to participate in the training and prediction while its
hardware attributes ensure confidentiality and privacy.

Graepel et al. [30] proposed to use HE in machine learning
algorithms. Aslett et al. [31] show the algorithm for training a
machine model on the homomorphically encrypted ciphertext.
CryptoNets [16] uses the scaled mean-pool function instead
of the max-pool function to avoid division in polling layers,
and the square function is adopted to approximate the highly
non-linear activation function, while these operations cannot
be calculated in HE. Karthik et al. [32] proposed the first
approach that attempts training deep neural networks on en-
crypted data using fully HE in a non-interactive way, and the
non-linear function is realized by a piecewise look-up table
dexterously to obtain relatively accurate results. Chabanne et
al. [10] proposed a novel approach that uses the polynomial
approximation of ReLU function with batch normalization and

adds a normalized layer before each activation layer to enable
a stable and normal distribution at the inputs of the activation
function. Intel nGraph [33] takes advantage of the graph
compiler toolchain to create a framework for deep learning
with HE, but it supported only a limited class of models,
restricted to polynomial activations. nGraph-HE2 [34] utilizes
a client-aided model to execute deep learning models that con-
tain more types of non-polynomials to maximize throughput.
A novel system proposed in [35] utilizes additively homo-
morphic encryption to protect the gradients over the honest-
but-curious cloud server providing deep learning services.
The paper [36] utilizes the Taylor theorem to approximate
the Sigmoid function in homomorphic-enabled deep learning
models. Gazelle [37] is a framework for the secure evaluation
of the convolution neural network, which consists of speedy
homomorphic implementation and garbled circuits. POCC [38]
uses a proxy re-encryption fully homomorphic scheme to
encrypt the providers’ sensitive data and mixed with Yao’s
circuit. Taylor and Maclaurin series is used to approximate
the non-linear function.

YERBA BUENA [29] is an enclave-based model serving
system to protect the integrity and confidentiality of user input
data. PRIVADO-Converter [39] is a tool that converts Torch [40]
to replace data-dependent branches, and it auto-generates a
minimal amount of Torch code which runs seamlessly on
SGX. Chiron [18] is a system that employs a sandbox called
Ryoan [41] on SGX to train the machine learning model on
an outsourced service without revealing training data. Ohri-
menko et al. [42] proposed data-oblivious machine learning
algorithms based on trusted SGX processors.

X. CONCLUSION

To implement the privacy-preserving neural network infer-
ence while avoiding the limitations of the HE and SGX, we
propose a hybrid CNN inference framework that combines
them to protect the security and privacy of users. In the case of
improving accuracy and throughput theoretically, we introduce
SGX to accelerate the HE-based CNN inference, eliminating
the approximation operations in HE. SGX is also taken as a
built-in part to distribute keys instead of an additional trusted
third party, thereby improving our framework’s scalability
and flexibility. In the experiments, we quantified the time-
consuming of some basic HE operations in the CNN inference
and compared them with corresponding operations in SGX.
We also evaluated each layer’s performance in the framework
under HE and SGX, respectively, and analyzed their charac-
teristics and advantages. Finally, taking the CAVs scenario
as a case study in edge computing, we implemented and
evaluated our framework using a real CNN model to verify the
feasibility and superiority. The proposed framework provides
the foresight practice of traditional encryption schemes mixed
with trusted hardware technology for privacy-preserving neural
network inference.
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