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Parallel Key-Insulated Multiuser Searchable
Encryption for Industrial Internet of Things

Jie Cui , Jie Lu , Hong Zhong , Qingyang Zhang , Chengjie Gu, and Lu Liu

Abstract—With the rapid development of the industrial
Internet of Things (IIoT) and cloud computing, an increas-
ing number of companies outsource their data to cloud
servers to save costs. To protect data privacy, sensitive
industrial data must be encrypted before being outsourced
to cloud servers. A multiuser searchable encryption (MUSE)
scheme was introduced to ensure high efficiency of en-
crypted data retrieval. In an IIoT system with numerous
users, the existing MUSE schemes suffer from certain key
exposure problems owing to the limited key protection of
smart devices and frequent queries by users. In this arti-
cle, we propose a parallel key-insulated MUSE scheme for
IIoT. This scheme utilizes broadcast encryption technology
to implement MUSE. In addition, our scheme introduces
a key-insulated primitive to improve the tolerance to key
exposure. The security of our scheme is proved in the
random oracle model. The experimental results show that
our scheme achieves high computational efficiency.

Index Terms—Industrial Internet of Things (IIoT), key
exposure, key-insulated, multiuser (MU) searchable
encryption (MUSE).

I. INTRODUCTION

W ITH the rise of “Industrial Revolution 4.0,” the industrial
Internet of Things (IIoT) [1], which is the result of the

rapid development and application of the Internet of Things
in the industrial field, has attracted widespread attention from
society. In IIoT, industrial data are monitored, collected, ex-
changed, and analyzed by connecting various physical devices,
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Fig. 1. MUSE scenario for IIoT.

such as sensors and actuators. The use of IIoT reduces the
cost of production and consumption of resources, improves
product quality and performance, and makes manufacturing and
industrial processes more intelligent. In addition, with the rapid
development of cloud computing via powerful data processing
and storage capabilities, an increasing amount of IIoT data
are outsourced to the cloud for storage. This reduces the cost
of data management and improves the efficiency of industrial
manufacturing.

Although data outsourcing presents several benefits to indus-
trial management, it also introduces major issues concerning
data security and privacy [2], [3] in cloud-based IIoT. The
privacy of outsourced data depends entirely on the cloud servers
(CSs). However, CSs are not completely trustworthy. To pro-
tect data privacy, sensitive industrial data must be encrypted
before being outsourced to CSs. However, traditional encryption
schemes make it difficult to retrieve data from the CSs. To
overcome this challenge, multiple secure keyword searchable
encryption (SE) schemes [4]–[8] have been proposed for effec-
tive ciphertext retrieval and data sharing.

In an IIoT system with numerous users, the data owner (DO)
authorizes multiple users to share encrypted data and allows
them to perform keyword queries on the shared data in the CS.
This scenario is called multiuser (MU) searchable encryption
(MUSE). Fig. 1 illustrates the MUSE scenario for IIoT. In an
industrial production process, various physical devices collect
large amounts of data. The DO encrypts these data and keywords,
and uploads them to the CS via the Internet. Furthermore, data
users (DUs) can send keyword queries to CSs. The CS verifies
whether the query matches the keyword ciphertext and then
returns the data ciphertext containing the keyword to the users.

However, there exists a key exposure problem in the deploy-
ment and application of IIoT. In a large-scale IIoT system, an
increasing number of mobile smart terminal devices are used,
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and the protection of keys by these devices is limited. DUs often
use their keys to perform query operations on these insecure
devices and then submit queries to the CS. In this process, a
malicious adversary can easily steal the user’s key information,
which can lead to key exposure problems. Once the user’s
private key is compromised, the adversary may use the exposed
private key to submit a legitimate request to the CS. The CS
successfully verifies it and returns the previously encrypted data
to the adversary. Eventually, the adversary can use the exposed
private key to decrypt the encrypted data. This is a significant
hazard.

Some existing SE schemes [9]–[12] reduce the hazard of key
exposure through supporting forward security (FS). However,
these schemes can only protect past keys and cannot protect
future keys. The introduction of a key insulation primitive [13],
[14] can effectively address the key exposure problem. The
idea of key insulation is to store long-term keys in a physically
secure but computationally limited device called a helper. The
short-term key is stored on a powerful but insecure device, which
is updated through the helper every given time period. The key
insulation scheme ensures that keys before and after that expo-
sure time period cannot be deduced from the already exposed
key, i.e., forward and backward security (BS) is guaranteed. The
MUSE scenarios with numerous users are more vulnerable to
key exposure, but few MUSE schemes consider this security
issue.

Another common problem in data sharing is that DOs se-
lectively share their data with the users. To protect the privacy
of shared data, the DO needs to use different keys to encrypt
different files, which is called multikey searchable encryption
(MKSE). Most existing MKSE schemes [15], [16] do not im-
plement access control (AC). Any user can search and decrypt
files, which may lead to a breach in the data privacy.

For the abovementioned issues, it is a challenge for IIoT to
design a MUSE that can solve the key exposure problem and
support multikey encryption (MK).

A. Related Work

An increasing number of individuals and enterprises store
large amounts of industrial data in the cloud, multiple SE
schemes [17], [18] have been proposed to ensure efficient ci-
phertext retrieval.

Single-user SE. SE was first realized through symmetric
encryption, called symmetric searchable encryption (SSE), pro-
posed by Song et al. [19]. SSE allows the CS to perform searches
while protecting privacy, but it has a high key management
overhead in symmetric settings. To solve this problem, Boneh et
al. [20] first proposed the public-key encryption with keyword
search (PEKS) scheme. The DO encrypts the data and keywords
with the public key of the target receiver. The data receiver can
use his private key to generate a query trapdoor and submit it to
the CS to retrieve the ciphertext. Subsequently, many variants
of the PEKS were proposed.

Tian et al. [21] proposed an identity-based PEKS scheme
to simplify the management of public key and certificate in
traditional PEKS based on public-key infrastructure (PKI). He

et al. [22] and Ma et al. [23] proposed a certificate-less PEKS
scheme for IIoT that solves the key escrow problem, respec-
tively. However, most PEKS schemes include expensive bilinear
pairing operations and modular exponentiation operations, it is
difficult to solve the ciphertext retrieval problem in the MU
scenario.

MUSE. In MUSE, the DO can encrypt the same keyword for
a group of users to avoid unnecessary data redundancy. In the
practical application of IIoT, the MU scenario is more common.

Attrapadung et al. [24] introduced an encryption primitive
called Hierarchical Identity Coupled Broadcast Encryption, and
constructed a public broadcast SE scheme. Then, Ali et al. [25]
proposed a broadcast searchable keyword encryption (BSKE)
scheme. In the scheme, the size of the ciphertext is fixed and
does not increase with the number of users. Kiayias et al. [26]
proposed a more effective MUSE scheme based on previous
research. This scheme implements MK, and users can decrypt
the decryption keys of the search results. But it is expensive
because each user’s key has 14 grouping elements. Lu et al. [27]
proposed a certificate-less PEKS scheme for multiple users. The
scheme reduces a lot of computational costs because it does not
use bilinear pairing operations. However, the computation cost
will increase with the number of users.

Key exposure problem. In the deployment and application of
IIoT, how to ensure the security of user keys is a major challenge.
In an IIoT system, numerous physical devices have limited
protection of keys. Users use their keys to frequently perform
queries on such insecure devices, key exposure may occur.
Dodis et al. [13] first proposed the concept of key-insulated.
By frequently updating the private key, the tolerance to key
exposure can be improved. But this also means frequent con-
nections between help devices (HDs) and unsecured networks,
which increases the risk of help keys being exposed. Therefore,
Hanaoka et al. [28] proposed the parallel key-insulated public
key encryption scheme, which uses two secure physical devices
as helpers to update keys alternately. They aim to reduce the
risk of helpers’ key exposure by reducing the frequency of their
connections to insecure environments.

SE allows users in different geographical locations to share
data, but inevitably suffers from the problem of key exposure.
Recently, some SSE schemes [9], [10] have addressed this
security issue by supporting FS. Later, the scheme proposed by
Zhang et al. [11] uses the lattice basis delegation mechanism to
achieve the FS of the system. Recently, Kim et al. [12] proposed
a forward-secure PEKS scheme based on hierarchical identity-
based encryption. However, few MUSE schemes address the
problem of key exposure in previous studies.

B. Our Contribution

To solve the abovementioned problems, we propose a parallel
key-insulated MUSE (PKI-MUSE) scheme for IIoT. First, the
PKI-MUSE scheme is based on the BSKE scheme [25] to
realize MUSE. Second, our scheme integrates the key-insulated
primitive and improves the tolerance to key exposure. In ad-
dition, the parallel mechanism allows frequent updates of the
user key while reducing the opportunity to expose the helper
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key, thus improving the security of the system. Specifically, our
contributions are as follows.

1) The PKI-MUSE scheme integrates the key-insulated
primitive to improve the tolerance to key exposure
through user key updates in each time period. In addition,
the user key update does not require re-encrypting the
data, which significantly reduces the encryption over-
head.

2) The PKI-MUSE scheme combines MK and ac to improve
the efficiency and security of search and decryption.

3) We provide security proof of our PKI-MUSE scheme in
the random oracle model [29]. In addition, through the
experimental simulation, we show the high efficiency and
practicability of our scheme.

C. Organization

The rest of this article is organized as follows. Section II
introduces the preliminaries. Section III describes the scheme
model and its security definition. In Section IV, we describe the
proposed scheme and prove its security in Section V. Section VI
provides some performance evaluations. Finally, Section VII
concludes this article.

II. PRELIMINARIES

In this section, we introduce some preliminaries, including
the properties of bilinear mapping and the security assumptions
of the proposed scheme.

A. Bilinear Mapping

Let G1 and G2 be additive cyclic groups of order p, GT be
a multiplicative group of order p. p is a prime number, g and h
are generators of G1 and G2, respectively. A bilinear mapping
e : G1 ×G2 → GT must satisfy the following properties:

1) bilinearity: Given any a, b ∈ Z∗
p, e(ga, hb)= e(g, h)ab ∈

GT ;
2) nondegenerate: e(g, h) �= 1;
3) computability: There is polynomial time algorithm by

given any g ∈ G1, h ∈ G2 that can calculate e(g, h) ∈
GT .

B. Security Assumptions

We present a bilinear Diffie–Hellman exponent ((l, l)-BDHE)
problem [30].

Let l be an integer and e : G1 ×G2 → GT be a bilinear map-
ping, where G1 and G2 be additive cyclic groups of prime order
p,GT be a multiplicative group of orderp. Given 3l + 2 elements
(v, g, h, gα, gα

2
, . . ., gα

l
, gα

l+2
, . . ., gα

2 l
, hα, hα2

, . . ., hαl
) as

input, output vector e(g, v)α
l+1 ∈ GT , where g, gα

i ∈ G1 and
v, h, hαi ∈ G2.

For convenience, let gi = gα
i
, hi = hαi

. Let A be a τ -time
algorithm that takes an input challenge for (l, l)-BDHE and
outputs a decision bit b ∈ {0, 1}. We say thatA has an advantage

Fig. 2. System model of PKI-MUSE.

ε to solve problem (l, l)-BDHE if

Pr[A(v, g, h, g1, g2, . . ., gl, gl+2, . . ., g2 l, h1, h2, . . ., hl)

= e(gl+1, v)] ≥ ε
(1)

where probability is distributed over a random selection of g ∈
G1 and v, h ∈ G2, random choice of α ∈ Z∗

p, random of choice
of T ∈ GT , and random bits selected by A.

Definition 1: The (τ, ε, l, l)-BDHE assumption holds in
(G1, G2) if no τ -time algorithm has advantage at least ε
in solving the (l, l)-BDHE problem in (G1, G2).

III. SYSTEM MODEL AND SECURITY DEFINITION

In this section, we present the system model and security
definition of the PKI-MUSE scheme.

A. System Model

As shown in Fig. 2, the scheme consists of the following five
entities, namely: a trusted authority (TA), a CS, a DO, multiple
DUs, and two HD for each DU.

TA: The TA is responsible for generating a set of system
parameters and a system master key. At the same time, it is
responsible for distributing an initial key to each DU and two
helper master keys to each HD.

DO: The DO is responsible for encrypting IIoT data and key-
words, and setting a subset of authorized users, then uploading
the ciphertext and subset to the CS. It is also responsible for
adding and removing users.

DU: The DU is responsible for generating trapdoors for the
keywords he/she wants to search for and sending them to the CS
for query requests.

HD: The HD is responsible for generating a helper key to
update the private key of the DU.

CS: The CS locates all the matching ciphertext using the
search trapdoor and returns them to the user. In our scheme, the
TA will first run the setup, generate the system master key mst,
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public parameter param, and the helper master key {si,0, si,1}.
Then, the TA runs the KeyGen to generate the initial key uski,0,
sends uski,0 to each user and sends {si,0, si,1} to each HD,
respectively. Next, the DO runs the encrypt to generate ciphertext
C and subset S and sends them to the CS. The DU runs the
trapdoor to generate a trapdoor and submits it to the CS for
a query request. Finally, the CS runs the search and sends all
matching ciphertexts to the user. The DU can run the decrypt to
get data. If necessary, the DU will run the update to update his
private key with the HD’s key.

B. Scheme Framework

The PKI-MUSE scheme is as follows.
Setup(λ, n) → {mst, si,0, si,1, param}: Input a security pa-

rameter λ and the maximum number of usersn, return the system
master key mst, and the public parameter param and generate
the helper master key {si,0, si,1}, where i ∈ {1, 2, . . ., n}.

KeyGen(i,mst, si,0, si,1) → {uski,0}: TA generates an initial
key uski,0 for user i and sends uski,0 to user i through a secure
channel. Then TA sends {si,0, si,1} to the two HDs of user i
through a secure channel, respectively.

Update(t, uski,t−1, si,k) → {uski,t}: The DU inputs time pe-
riod t, where t ∈ {1, 2, . . ., N}. The HD k(k ≡ t (mod 2))
updates helper key hski,t and sends to the user. The user then
updates the key uski,t for the period t.

Encrypt(F,W ) → {C, S}: The DO selects different symmet-
ric keys to encrypt files F = {f1, f2, . . ., fm}, generates file
ciphertextCf and extractes keywordsW = {w1, w2, . . ., wq} to
generate keyword ciphertext Cw. Set up a subset of authorized
users S ⊆ {1, 2, . . ., n} and upload C = (Cf , Cw) and S to the
CS for storage.

Trapdoor(t, uski,t, w
′, S) → {Ti,t}: The DU uses the key

uski,t and the keyword w′ that you want to search to generate
trapdoor Ti,t and submits it to the CS for query requests.

Search(i, t, C, Ti,t, S) → {C ′}: The CS first checks whether
the user i is valid (included in S), then verify whether the
keyword ciphertext matches the query trapdoor. Finally, the
server sends all matching ciphertext C ′ to the user.

Decrypt(uski,t, C
′) → {F ′}: The user uses uski,t to decrypt

the symmetric key and then uses the symmetric key to decrypt
the ciphertext to obtain the files F ′.

AddUser(x): When adding a user x, the DO first adds user
x to the authorized user subset S and then modifies C2 in the
keyword ciphertext Cw.

RevokeUser(x): When revoking a user x, the DO first deletes
the user x from the authorized user subset S and then modifies
the C2 in the keyword ciphertext Cw.

C. Security Definition

Here, we define semantic security for the PKI-MUSE scheme.
This is based on the security definition of [13] and [25].

Setup: Challenger C runs the setup to generate param, mst
and {si,0, si,1}. He sends param to adversary A, keeping mst
and {si,0, si,1} only known by himself.

Phase 1: Adversary A publishes the following series of
queries.

Exposure queries 〈i, t, class〉: If class = user, C runs the Key-
Gen and the update and gets a temporary key uski,t, then returns
it to A. If class = helper, C sends the helper key si,k(k ≡ t
(mod 2)) to A.

Trapdoor queries 〈i, t, w, S〉: C runs the KeyGen and the
update to obtain a temporary key uski,t. Then, he runs the
trapdoor to obtain a trapdoor Ti,t and returns it to A.

Challenge: A selects two challenge keywords of the same
length w0, w1 and time period t∗ ∈ {1, 2. . ., N} and sends it
to challenger C. The challenger randomly selects b ∈ {0, 1} and
generates the challenge ciphertext Cb with the keyword wb, then
sends it to A.

Phase 2: A makes the second round of exposure queries and
trapdoor queries as in phase 1. Note that in phase 1 and phase 2,
challenge user i /∈ S and 〈i, t∗, wb, S〉 cannot appear in trapdoor
query lists.

Guess: A runs the search to do a test. Finally A sends a guess
b′ ∈ {0, 1} to the challenger. A wins the game if b = b′.

Let us define the advantage of A

AdvPKI-MUSE(A) = Pr[b = b′]− 1
2
. (2)

IV. PROPOSED PKI-MUSE SCHEME

In this section, we show the specific construction of the PKI-
MUSE scheme.

A. System Setup

Setup(λ, n) → {mst, si,0, si,1, param}: Input a security pa-
rameter λ and the maximum number of users n, then gen-
erate a bilinear set of parameters (p,G1, G2, GT , e). The TA
chooses two generators g ∈ G1, h ∈ G2, a random number α ∈
Z∗
p, and calculates gi = gα

i
, hi = hαi

for i = (1, 2, . . ., n, n+
2, . . ., 2n). Then, the TA chooses a random number γ ∈ Z∗

p

and generates the helper master keys {si,0, si,1} for the two
HDs of user i, respectively, where i ∈ {1, 2, . . ., n}. Cal-
culate system public key pk = gγ , the public key of each
HD pki,0 = hsi,0 , pki,1 = hsi,1 . Choose two collision resis-
tant hash functions H1 : {0, 1}∗ → Z∗

p and H2 : {0, 1}∗ → G1,
then calculate u−1 = gH1(−1), u0 = gH1(0). Finally, the TA
chooses a pair of semantically secure symmetric encryption
and decryption algorithms E and D. The public parameter
and system master key are param = {{gi}(i=1,2,...,n,n+2,...,2n),
{hi}(i=1,2,...,n,n+2,...,2n), pk, pki,0, pki,1, H1, H2, u−1, u0}, and
mst = γ, respectively.

B. Key Generation

KeyGen(i,mst, si,0, si,1) → {uski,0}: The TA first calculates
di,−1 = u

si,1

−1 , di,0 = u
si,0

0 and generates an initial key uski,0 =
(gi)

γdi,−1di,0. Then, the TA sends uski,0 to user i through a
secure channel and sends {si,0, si,1} to the two HDs of user i
through a secure channel, respectively.

C. Key Update

Update(t, uski,t−1, si,k) → {uski,t}: Input a time period
t, where t ∈ {1, 2, . . ., N}, the HD k(k ≡ t (mod 2))
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calculates ut−2 = gH1(t−2), di,t−2 = u
si,k
t−2 , di,t = u

si,k
t . Then,

the HD k(k ≡ t (mod 2)) updates helper key hski,t =
d−1
i,t−2di,t and sends to the user. Finally, the user calculates

uski,t = uski,t−1hski,t, deletes uski,t−1 and hski,t.

D. Data Encryption

Encrypt(F,W ) → {C, S}: For files F = {f1, f2, . . ., fm},
the DO first selects different symmetric keys Kx, calculates
file ciphertext Cx = E(Kx, fx). Then, the DO extracts the
keywords W = {w1, w2, . . ., wq} and sets authorized user sub-
set S ⊆ {1, 2, . . ., n} to access files F . The DO selects a
random number r ∈ Z∗

p and calculates C0 = hr, C1 = hr
1 ,

C2 = (pk
∏

j∈S gn+1−j)r, C3,y = H2(wy)
r, C4 = ur

−1, C5 =
ur

0 , Cf,x = Kxe(g1, hn)
r. Finally, the DO uploads ciphertext

C = (Cf , Cw) to the cloud storage and publishes S to the
authorized users and the CS, where Cf = (Cx, Cf,x), Cw =
(C0, C1, C2, C3,y, C4, C5).

E. Trapdoor Generation

Trapdoor(t, uski,t, w
′, S) → {Ti,t}: The DU selects a ran-

dom number z ∈ Z∗
p and generates the trapdoor Ti,t in time

period t by calculating T0 = hz , T1 = hz
i , T2 = gzn, T3 =

(uski,tH2(w
′)
∏

j∈S,j �=i gn+1−j+i)z , T4 = pkz
i,0, T5 = pkz

i,1.
Then, the DU sends Ti,t = (T0, T1, T2, T3, T4, T5) to the CS for
a query.

F. Search

Search(i, t, C, Ti,t, S) → {C ′}: The CS first checks whether
user i is valid (included in S) and then calculates:

If t ≡ 0 (mod 2)

K = e(T4, C5)
H1(t)/H1(0)e(T5, C4)

H1(t−1)/H1(−1). (3)

Otherwise t ≡ 1 (mod 2)

K = e(T4, C4)
H1(t−1)/H1(−1))e(T5, C5)

H1(t)/H1(0). (4)

They verify whether (5) holds. If the equation holds, output
“true,” the CS sends the matching ciphertext C ′ to the user,
otherwise output “false.” Note that C ′ ⊆ C

K
?
=

e(T3, C0)e(T2, C1)

e(T1, C2)e(C3,y, T0)
. (5)

G. Data Decryption

Decrypt(uski,t, C
′) → {F ′}: After receiving C ′, the DU cal-

culates
If t ≡ 0 (mod 2)

K ′ = e(pki,0, C5)
H1(t)/H1(0)e(pki,1, C4)

H1(t−1)/H1(−1). (6)

Otherwise t ≡ 1 (mod 2)

K ′ = e(pki,0, C4)
H1(t−1)/H1(−1)e(pki,1, C5)

H1(t)/H1(0). (7)

Obtain the symmetric keyKx by (8), then the user decrypts the
file fx = D(Kx, Cx). Where pub =

∏
j∈S,j �=i gn+1−j+i. Note

that the pub of the setS can only be calculated once for efficiency

Kx =
e(uski,tpub, C0)Cf,x

e(hi, C2)K ′ . (8)

H. User Addition and Revocation

AddUser(x): When adding a user x, the DO first adds user
x to the authorized user subset S and then modifies C2 = C2 ·
(gn+1−x)

r in the keyword ciphertext Cw.
RevokeUser(x): When revoking a user x, the DO first deletes

the user x from the authorized user subset S and then modifies
C2 = C2/(gn+1−x)

r in the keyword ciphertext Cw.

V. SECURITY PROOF

In this section, we present the correctness verification and
security proof of the scheme.

A. Correctness Verification

We first verify the search. For (3) and (4), we expand the
calculations in (9) and (10), then verify the correctness of (5) in
(11).

If t ≡ 0 (mod 2)

K = e(T4, C5)
H1(t)/H1(0)e(T5, C4)

H1(t−1)/H1(−1)

= e(pkz
i,0, u

r
0)

H1(t)/H1(0)e(pkz
i,1, u

r
−1)

H1(t−1))/H1(−1)

= e(pkz
i,0, u

r
t )e(pkz

i,1, u
r
t−1). (9)

Otherwise t ≡ 1 (mod 2)

K = e(T4, C4)
H1(t−1)/H1(−1))e(T5, C5)

H1(t)/H1(0)

= e(pkz
i,0, u

r
−1)

H1(t−1)/H1(−1)e(pkz
i,1, u

r
0)

H1(t)/H1(0)

= e(pkz
i,0, u

r
t−1)e(pkz

i,1, u
r
t ) (10)

e(T3, C0)e(T2, C1)

e(T1, C2)e(C3,y, T0)

=
e((uski,tH2(w

′)
∏

j∈S,j �=i gn+1−j+i)
z, hr)e(gzn, h

r
1)

e(hz
i , (pk

∏
j∈S gn+1−j)r)e(H2(wy)r, hz)

=
e((uski,tH2(w

′))z,hr)e(
∏

j∈S gn+1−j+i,h
r)ze(gzn, h

r
1)

e(hz
i , (pk

∏
j∈S gn+1−j)r)e(H2(wy)r, hz)e(gzn+1, h

r)

=
e(uski,t, h

r)ze(H2(w
′), hr)ze(

∏
j∈S gn+1−j+i, hr)z

e(hz
i , pk)re(hz

i ,
∏

j∈S gn+1−j)re(H2(wy)r, hz)

=
e(gγi , h

r)ze(di,t−1, h
r)ze(di,t, h

r)z

e(hz
i , g

γ)r

= e(u
si,k
t−1 , h

r)ze(u
si,k
t , hr)z

= e(ur
t−1, h

si,k)ze(ur
t , h

si,k)z

= K. (11)

Then. we verify the decrypt. For (6) and (7), we expand the
calculations in (12) and (13), then verify the correctness of (8)
in (14).
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If t ≡ 0 (mod 2)

K ′ = e(pki,0, C5)
H1(t)/H1(0)e(pki,1, C4)

H1(t−1)/H1(−1)

= e(pki,0, u
r
0)

H1(t)/H1(0)e(pki,1, u
r
−1)

H1(t−1)/H1(−1)

= e(pki,0, u
r
t )e(pki,1, u

r
t−1). (12)

Otherwise t ≡ 1 (mod 2)

K ′ = e(pki,0, C4)
H1(t−1)/H1(−1)e(pki,1, C5)

H1(t)/H1(0)

= e(pki,0, u
r
−1)

H1(t−1)/H1(−1)e(pki,1, u
r
0)

H1(t)/H1(0)

= e(pki,0, u
r
t−1) · e(pki,1, u

r
t ) (13)

e(uski,tpub, C0)Cf,x

e(hi, C2)K ′

=
e(gγi di,t−1di,t, h

r)e(
∏

j∈S,j �=i gn+1−j+i, hr)Cf,x

e(hi, (pk
∏

j∈S gn+1−j)r)K ′

=
e(gγi di,t−1di,t, h

r)e(
∏

j∈S gn+1−j+i, hr)Kxe(hn, g1)
r

e(hi, gγ)re(hi,
∏

j∈S gn+1−j)re(gn+1, hr)K ′

=
e(gγi , h

r)e(di,t−1, h
r)e(di,t, h

r)Kxe(hn, g1)
r

e(hi, gγ)re(gn+1, hr)K ′

=
e(di,t−1, h

r)e(di,t, h
r)Kxe(hn, g1)

r

e(gn+1, hr)K ′

= Kx. (14)

We can clearly see that if wy = w′, our scheme is correct and
users can successfully get the searched files.

B. Security Proof

Suppose there is an adversaryAwith an advantage ε to destroy
the (l, l)-BDHE problem. We set up a challenger C, which has
a running time close to As running time.

Here, we assume that the adversary does not require exposure
queries 〈i, t, helper〉 for any period t.

Challenger C responds to adversary As queries as follows.
Setup: To generate param, challenger C randomly selects β ∈

Z∗
p, calculates

pk = gβ ·
⎛
⎝∏

j∈S
gn+1−j

⎞
⎠

−1

(15)

param = {{gi}(i=1,2,...,n,n+2,...,2n), pk, pki,0, pki,1

{hi}(i=1,2,...,n,n+2,...,2n), H1, H2} (16)

and gives param to A.
H1-queries: A publishes qH1 H1-queries. C prepares a list of

tuples 〈t, z〉 to simulate the H1 function, called H1-list. The list
is initially empty. When A asks a query t to challenger.

1) Search the entire H1-list and return H1(t) = z to A when
the query t is in the H1-list.

2) Otherwise, the challenger randomly selects z ∈ Z∗
p, re-

turns H1(t) = z to A and adds the tuple 〈t, z〉 to the
H1-list.

H2-queries: A publishes qH2 H2-queries. C prepares a list
of tuples 〈wj , hj , xj , yj〉 to simulate the H2 function, called
H2-list. When A asks user i for the hash value of keyword w, C
responds as follows.

1) Search the entire H2-list and return H2(w) = hi to A if
wi is found.

2) Otherwise, C randomly selects (ui, xi), ui ∈ {0, 1}, xi ∈
Z∗
p. If ui = 0, calculates

hi = gxi

∏
j∈S

gn+1−j . (17)

Otherwise ui = 1, calculates

hi = (gxi)α
yi
∏
j∈S

gn+1−j (18)

where yi ∈ Z∗
p.

3) Add the tuple 〈wi, hi, xi, yi〉 to the H2-list and return
H2(w) = hi to A.

Exposure queries phase 1: A publishes qE exposure queries.
When A sends a query 〈i, t, class〉 to the challenger.

1) If class = helper, terminates the query.
2) Otherwise for i /∈ S,C runs H1-query and getsH1(t) from

the H1-list, then calculates the temporary key

uski,t = (gi)
βdi,t−1di,t(

∏
j∈S gn+1−j+i)

−1. (19)

Trapdoor queries phase 1: A publishes qT trapdoor queries.
The adversary sends the trapdoor query of keyword w to the
challenger, where user i(i /∈ S) private key is uski,t, then chal-
lenger will respond as follows.

1) C runs H2-query and getsH2(w) from the H2-list. If ui =
1, terminates the query.

2) Otherwise, when ui = 0, C calculates

hi = gxi

∏
j∈S

gn+1−j = H2(w). (20)

The challenger randomly selects s ∈ Z∗
p and cal-

culates T0 = (hs)α
i−yi , T1 = hs

i , T2 = gsn, T3 =

(uski,t(H2(w))
αi∏

j∈S,j �=i gn+1−j+i)s,T4 = pks
i,0,T5 = pksi,1.

Then, C returns Ti,t = (T0, T1, T2, T3, T4, T5) to A.
Challenge: A selects two challenge keywords of the same

length w0, w1 and period t∗ ∈ {1, 2. . ., N} and sends to C. C
responds as follows.

1) C runs the H2-query twice and gets the values h0, h1

of H2(w0) and H2(w1) from the H2-list. For i = 0, 1,
〈wi, hi, xi, yi〉 is the corresponding tuple in H2-list.

2) If u0 = 0 and u1 = 0, the query terminates.
3) If u0 = 1 and u1 = 1, C randomly selects b ∈ {0, 1} to

select the values of H2(w0) and H2(w1).
4) Otherwise, the values ofH2(w0) andH2(w1) are selected

based on u0 and u1.
5) The challenger randomly selects r ∈ Z∗

p, then calcu-
latesC0 = hr,C1 = hr

1 ,C2 = (pk
∏

j∈S gn+1−j)r = gβ ,
C3 = H2(wb)

r, C4 = ur
−1, C5 = ur

0 . Then C returns
Cw = (C0, C1, C2, C3, C4, C5) to A.
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TABLE I
FUNCTION COMPARISON

Phase 2: A makes the second round of exposure queries and
trapdoor queries as in phase 1, but the restriction is that the
queried keyword cannot be mentioned in the challenge phase.

Guess: A runs the search to do a test. Finally, A sends a guess
b′ ∈ {0, 1} to the challenger. A wins the game if b = b′.

Now, we analyze the probability that C can solve the (l, l)-
BDHE problem. First, we define the following three events to
simplify the probability analysis.
E1: C will not terminate during the exposure queries phase.
E2: C will not terminate during the trapdoor queries phase.
E3: C will not terminate during the challenge phase.
E4: C will not terminate during the simulation and it will

produce the correct answer.
During the exposure queries phase, C will terminate if class =

helper. The probability that A chooses class = helper is 1/2qE ,
then Pr[class �= helper] = 1 − 1/2qE ≥ 1/qE . The probability
that C will not terminate is at least 1/qE .

Meanwhile, from [20], we know that
Pr[E2] ≥ 1/e, Pr[E3] ≥ 1/qT , Pr[E4] ≥ ε/qH2

ε′ = Pr[E1] ∩ Pr[E2] ∩ Pr[E3] ∩ Pr[E4]

= ε/eqEqH2qT .
(21)

Since Cs success probability is at least ε/eqEqH2qT , where e
is base of natural logarithm.

VI. PERFORMANCE EVALUATION

We implement the scheme by using the MIRACL Core cryp-
tography library in C++. The CS and devices are simulated on
Ubuntu 18.04.3 with Intel Core i5-7500 CPU@3.40 GHz and
16 GB of memory. We choose a pairing-friendly elliptic curve
BLS12-381 with embedding degree 12. Specifically, G1 is the
p-order subgroup of E(Fp) : y

2 = x3 + 4 and G2 is the p-order
subgroup of E ′(Fp2) : y2 = x3 + 4(u+ 1) where the extension
field Fp2 is defined as Fp(u)/(u

2 + 1). And it can achieve 128-b
security level.

A. Functional Comparison

In Table I, we compare the functions with several typical
SE schemes. Mainly from these several aspects: MU, FS, BS,
AC, and MK. From the Table I, we can see that our scheme
realizes MU keyword SE, improves the tolerance to key exposure
through key-insulated. In addition, our scheme combines AC
and multi-key encryption (MK) to achieve secure and effective
search and decryption.

TABLE II
RUNNING TIME(MS)

Fig. 3. Time cost of encrypt.

B. Computation Cost

In order to evaluate the performance of our scheme, we
implement SEMEKS [26] and MRCLKS [27] in the same
experimental environment. Because the comparison schemes
lack some functions, we mainly compare the running time of
encryption, trapdoor, search, and decryption. Table II shows the
running times for our scheme with the different number of users.
The average running time of the key update is 1.0852 ms.

Fig. 3 illustrates the time cost for the DO to run the encrypt.
The encryption time of MRCLKS [27] is linearly related to the
maximum number of users, while our scheme and SEMEKS [26]
are not affected, which is approximately constant. Whenn = 24,
the time cost of our scheme is about 8.823 ms, while that in
SEMEKS [26] and MRCLKS [27] is 14.201 ms and 25.947 ms,
respectively. By comparison, our scheme takes the least encryp-
tion time. Both our scheme and SEMEKS [26] utilize broadcast
encryption to implement MUSE, while MRCLKS [27] uses the
public key of all users to encrypt keywords, and the encryption
overhead increases with the number of users. Therefore, for
an IIoT system with numerous users but resource-constrained
physical devices, our scheme has significant advantages.

Fig. 4 illustrates the time cost of the user to run the trap-
door. The time of generating the trapdoor of the three schemes
is linearly related to the number of search keywords. When
the number of keywords is 10, our scheme is about 39.9 ms,
SEMEKS [26] and MRCLKS [27] is about 78.978 ms and
7.069 ms, respectively. In order to resist the harm of key ex-
posure, our scheme takes more time to generate trapdoors than
MRCLKS [27], but it is more effective than SEMEKS [26].

Then, we compare the time cost of the search at the CS-side.
Fig. 5 illustrates the search time of MRCLKS [27] increases with
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Fig. 4. Time cost of trapdoor.

Fig. 5. Time cost of search.

Fig. 6. Time cost of decrypt.

the number of users, while the search time of our scheme and
SEMEKS [26] is approximately constant, and the time cost of
our scheme is only a little more than the latter. Whenn = 24, the
time is about 3.392 ms, 15.597 ms, and 13.371 ms, respectively.
When the user key is updated, our scheme gives the permission
of ciphertext update to the CS, which does not require the DO
to re-encrypt the data online at all times. However, the cost is to
increase the search time within an acceptable range.

Finally, from Fig. 6, we can see that the decryption time cost
of our scheme and SEMEKS [26] is approximately constant.
The main goal of this study is to improve the tolerance to key
exposure by introducing a key-insulated primitive. Therefore,
the decryption efficiency of our scheme is slightly lower than
SEMEKS [26].

C. Communication Cost

Table III shows the contrast scheme communication cost,
where |G1|, |G2|, |GT |, |Z∗

p|, and h are the size of the elements
in the elliptic curve group G1 and G2, an element in the bilinear
target groupGT , an integer inZ∗

p, and a hash value, respectively.
The sizes are 48, 192, 576, 48, and 20 B, respectively. During
the encryption phase, for an increasing number of users, our
scheme has greater advantages. Although it is slightly larger

TABLE III
COMPARISON OF COMMUNICATION COST

than the others for generating the trapdoor, our scheme provides
a more secure search experience.

VII. CONCLUSION

In this article, we proposed a PKI-MUSE scheme suitable for
IIoT, which can solve the problem of ciphertext retrieval in an
MU environment. We first introduce a key-insulated primitive in
the MUSE and improve the tolerance to key exposure. Through
experimental evaluation, our scheme was proven to have a higher
computational efficiency and lower communication overhead
during encryption. However, there is another limitation that the
size of the master public key is considerably large, which linearly
increases with the total number of users, and the total number of
users is limited. These aspects need to be improved in the future.
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