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Abstract—Ensuring cloud data security and reducing cloud
storage costs have become particularly important. Many schemes
expose user file ownership privacy when deduplicating au-
thentication tags and during integrity auditing. Moreover, key
management becomes more difficult as the number of files
increases. Also, many audit schemes rely on third-party auditors
(TPAs), but finding a fully trustworthy TPA is challenging.
Therefore, we propose a blockchain-based integrity audit scheme
supporting data deduplication. It protects file tag privacy during
deduplication of ciphertexts and authentication tags, safeguards
audit proof privacy, and effectively protects user file ownership
privacy. To reduce key management costs, we introduce identity-
based broadcast encryption (IBBE) that does not require inter-
action with key servers, eliminating additional communication
costs. Additionally, we use smart contracts for integrity auditing,
eliminating the need for a fully trusted TPA. We evaluate
the proposed scheme through security and theoretical analyses
and a series of experiments, demonstrating its efficiency and
practicality.

Index Terms—Data deduplication, tag deduplication, integrity
auditing, blockchain.

I. INTRODUCTION

AN Internet Data Center (IDC) survey revealed that an
individual’s data volume can reach up to 5200 GB [1],

and the high cost of local storage for such significant amounts
of data has spurred an increase in cloud storage. According to
the IDC’s latest report, by 2027, global public cloud services
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are projected to generate $1.34 trillion in total revenue [2].
Although cloud-storage services offer considerable conve-
nience, incidents of data loss occur frequently. For instance,
the Ernst and Young accounting firm was the victim of a ran-
somware attack by the LockBit organization in 2021, resulting
in substantial theft of data [3]. In the absence of effective au-
diting strategies, a cloud service provider (CSP) may claim that
data are securely stored to maintain its reputation. Furthermore,
the IDC survey indicates that nearly 75% of the data outsourced
to CSPs consist of redundant duplicates [4], which significantly
waste CSP storage space. Therefore, to enhance the reliability
and storage efficiency of cloud storage systems, integrity audit-
ing technologies are crucial in verifying the correctness of the
stored data, and data deduplication techniques are required to
remove redundant files from the cloud.

As mentioned previously, the large number of redundant data
files in cloud storage causes a significant waste of CSP storage
space. The elimination of redundant files through deduplication
can significantly reduce CSP storage costs. Therefore, to en-
hance the efficiency of cloud storage, data deduplication has
been proposed. Currently, there are some related works and
they also achieve certain results [5]. In their schemes, files
are primarily subjected to convergent encryption, which allows
identical files to be encrypted into the same ciphertext, enabling
CSPs to perform redundant file deduplication. Convergent en-
cryption involves using the plaintext hash of a file as the key
for encrypting the file. However, these solutions have shortcom-
ings, such as the presence of redundant file authentication tags.

Typically, the tag size is linearly related to the number of
files and can even be larger than the files themselves. There-
fore, further deduplication of authentication tags can signifi-
cantly reduce CSP storage costs. Consequently, in some existing
studies [6], [7], the hash value of a file is used as the signa-
ture key to generate authentication tags, thereby enabling the
deduplication of duplicate tags. However, the same file tag is
used during the auditing process, which can reveal the users
who own the same files, leading to privacy leakage. Therefore,
privacy protection measures should be applied to file labels dur-
ing duplicate authentication tag deduplication. Moreover, most
auditing schemes introduce blockchain technology to reduce
reliance on fully trusted third-party audits (TPAs). However, in
many current schemes [7], [8], storing audit proofs on a public
blockchain still poses privacy leakage issues because the audit
proofs for the same file are publicly known on the blockchain.
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This also exposes the users who possess the file, thereby leaking
the privacy of user file ownership. Therefore, in addition to
the deduplication of duplicate files, further deduplication of
authentication tags and protection of user file ownership privacy
have become matters of significant importance.

In addition, the cost of key management for users is challeng-
ing. In many schemes [5], [6], [7], data owners hash the file or
data block to obtain convergent keys, which are subsequently
used to encrypt the file or data block. In this approach, clearly
as the number of files outsourced to the cloud increases, the
number of encryption keys that data owners need to store also
increases; thus, data owners bear the burden of managing many
encryption keys. Li et al. [9] and Zheng et al. [10] introduced a
key server to help recover keys and alleviate the burden of key
storage. However, this method requires frequent interactions
between the data owner and key server.

To address these issues, we propose a blockchain smart-
contract-based solution for privacy-preserving data integrity
auditing and deduplication. The main contributions of this study
are as follows.

• An auditing framework based on identity-based broadcast
encryption and blockchain technology is proposed to ad-
dress the need for integrity auditing technology without
relying on TPA and alleviate user key management. The
proposed framework leverages blockchain technology to
avoid dependence on a fully trusted TPA. Additionally,
IBBE technology is used for key management to eliminate
reliance on a key management server.

• A scheme that randomizes file tags and audit proofs is
proposed to address the leakage of user file ownership
privacy. Even if file tags are public on the blockchain,
they do not reveal user privacy. Additionally, the proposed
scheme supports the deduplication of redundant authenti-
cation tags in cloud storage, further reducing CSP storage
costs.

• A security analysis of the proposed scheme is conducted to
ensure its theoretical feasibility. Subsequently, experimen-
tal tests are conducted on the proposed method. The results
demonstrate the security and efficiency of the proposed
scheme.

II. RELATED WORK

A. Data Auditing Supporting Deduplication

To ensure the integrity of outsourced data and enhance the
efficiency of cloud storage, a series of schemes for deduplica-
tion and data integrity auditing are proposed. In 2013, Yuan
et al. [11] were the first to propose a cloud storage scheme for
data integrity auditing based on data deduplication. However,
their scheme requires all users to compute and upload identity
verification tags for the same file, leading to high local compu-
tational costs. Xu et al. [7] utilized audit logs on the blockchain
to supervise the partially trusted TPA, their scheme only allows
for deduplication and auditing of plaintext, sacrificing the con-
fidentiality of uploaded data.

Li et al. [12] proposed a cloud storage scheme that employs
a trusted proxy server to generate authentication tags for the

deduplication and auditing of encrypted data. However, relying
on such a trusted proxy server is a strong assumption and
extremely costly to implement in an insecure public network,
it is hard to achieve in practice. Subsequently, Liu et al. [13]
proposed a scheme without the need for a trusted proxy server,
using the MLE key as the key for authentication tags to achieve
tag deduplication. However, this method does not ensure the
accuracy of audit results when data is low entropy. Later, Gao
et al. [14] suggested using the initial uploader’s key to replace
the MLE key, but this only ensures the correctness of the audit
results for the initial uploader, without guaranteeing the relia-
bility of subsequent uploaders’ audit results.

To reduce the excessive reliance on third-party auditors
during the auditing process, Yuan et al. [5] used smart con-
tracts to perform audit tasks, proposing a blockchain-based data
deduplication scheme. However, in this scheme, the number of
authenticators is linearly correlated with the number of files,
which increases the storage overhead for the CSP. Tian et al. [6]
solved the single-point failure problem by utilizing two SSPs,
and implemented mutual audits between the two cloud servers.
However, in order to periodically update verification tags, users
must remain online.

In conclusion, these existing traditional schemes still have
deficiencies. Some incur high local computational costs, some
compromise the confidentiality of data, and others cannot elim-
inate interactions with key servers, among other issues. Addi-
tionally, these schemes do not take into account the protection
of users’ data ownership privacy.

B. Data Integrity Auditing

Deswarte et al. [15] introduced the “challenge-response”
model to verify the integrity of outsourced data. Building on
this, Ateniese et al. [16] proposed the concept of Provable
Data Possession (PDP), enabling efficient remote data auditing
through random sampling. Subsequently, a variety of public
auditing schemes are introduced, including those based on cer-
tificate auditing, certificate-less auditing, and multi-cloud au-
diting. Among these, the public verifiable Provable Data Pos-
session (PDP) scheme proposed by Wang et al. [17] leverages
a fully trusted TPA to significantly reduce the auditing burden
for users. However, the excessive dependence on Third-Party
Auditors emerged as a pivotal concern in most existing auditing
schemes, prompting the development of various decentralized
integrity auditing approaches. Yang et al. [18] introduced a
data integrity auditing scheme in a multi-copy, multi-cloud
environment, while Jiang et al. [19] introduced another strat-
egy using identity-based encryption methods, and Zhang et al.
[20] proposed an efficient integrity auditing mechanism and
secure deduplication scheme for blockchain storage, utilizing
blockchain smart contracts to perform auditing tasks. These
methods [18], [19], [20], along with other related research [21]
effectively reduce dependency on TPA.

In addressing the restoration of damaged data, Juels et al.
[16] introduced an innovative cryptographic primitive known
as Proof-of-Retrievability (PoR), which utilizes the sentinel
method. Subsequently, Shacham and Waters [22] enhanced this
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scheme by integrating erasure coding and BLS signatures [23]
into their approach.

Many traditional auditing schemes primarily focus on the
integrity of files being transferred to the cloud. However, for
practical application scenarios, it is also essential to address the
issue of eliminating redundant files in the cloud to save more
storage space for the CSP.

C. Deduplication of Redundant Data

To enhance cloud storage efficiency while ensuring the con-
fidentiality of outsourced data, secure data deduplication is
an important and effective strategy. In traditional encryption
methods, different users encrypt the same file into different
ciphertexts using distinct encryption strategies, which ham-
pers subsequent deduplication efforts. To facilitate privacy-
preserving data deduplication, Douceur et al. [24] introduced
convergent encryption, which produces a unique and fixed ci-
phertext for any given input file. Following this, several variants
of convergent encryption are proposed [9], [12], [25], [26], [27].
Bellare and others formalized convergent encryption and its
variants as the cryptographic primitive known as “Message-
Locked Encryption” (MLE) [25]. To strengthen the resistance
of MLE algorithms against brute-force attacks and reduce the
user’s key management overhead, some solutions introduce key
servers to assist in generating MLE keys. Specifically, Zhang
et al. [28] implemented an effective data deduplication function
within the JointCloud system using a ring key mechanism.
In the research by Zheng et al. [10], media data deduplica-
tion was facilitated through server-assisted MLE, which, how-
ever, presents a risk of single-point failure. Subsequent studies
suggest the use of a group of key servers, Zhang et al. [28]
proposed an activation mechanism that periodically changes
group members, yet the dependency on key servers remains
a challenge.

If existing data integrity auditing schemes are directly applied
to deduplication schemes, the same file might generate nu-
merous redundant authentication tags, unnecessarily occupying
substantial storage space of the CSP. Moreover, many auditing
schemes rely on third-party auditors, which, when integrated
with deduplication schemes, inevitably expose users’ file own-
ership privacy to the auditors. Some auditing schemes introduce
blockchain to avoid reliance on centralized TPAs, but storing
the audit results of the same files on the blockchain still poses
privacy leakage issues.

III. PRELIMINARIES

A. Bilinear Pairing

Given G1 and G2 are two finite cyclic multiplicative groups
of prime order p, and e :G1 ×G1 →G2 is a bilinear map with
the following properties:

• Bilinearity: For all x, y ∈G1 and a, b ∈ Zp, it holds that
e(xa, yb) = e(x, y)ab.

• Non-degeneracy: If g is a generator of G1, then e(g, g) is
a generator of G2.

• Computability: For all x, y ∈G1, there exists an efficient
algorithm to compute e(x, y) ∈G2.

A related complexity assumption is given below.
Definition 1 (Discrete Logarithm (DL) Problem Complex-

ity): Let G be a finite group of order p, and let g ∈G and x ∈G

be given elements. The discrete logarithm challenge is to find an
integer k ∈ Zp such that gk = x within G. This task’s difficulty
underpins the security of many cryptographic systems.

B. Identity-Based Broadcast Encryption (IBBE)

In Cécile Delerablée’s scheme [29], the functionalities of
Identity-Based Encryption (IBE) and Broadcast Encryption
(BE) are combined, allowing for the encryption of mes-
sages designated for specific identity groups rather than in-
dividual recipients. The implementation of this IBBE scheme
is pivotal for encrypting convergent keys, and operates as
follows:

• Setup(λ, u): Accepts the security parameter λ and a num-
ber of users u, and returns the master secret key msk and
the public parameters pp.

• Extract(IDi,msk): Accepts the identity IDi and the
master secret key msk, and returns the secret key skIDi

for the identity IDi.
• Encrypt(pp,m, S): Accepts the public parameters pp, a

message m, and a set of identities S = {ID1, . . . , IDs}.
It uses these inputs to generate a header Hdr and an
encryption key K, and outputs the tuple (Hdr, S,CM ),
where CM is the encrypted message.

• Decrypt(S, IDi, skIDi
, Hdr, pp): Accepts a set of iden-

tities S = {ID1, . . . , IDs}, an identity IDi with its cor-
responding secret key skIDi

, the header Hdr, and public
parameters pp. It decrypts the encryption key K, which is
then used to decrypt the ciphertext CM .

C. Blockchain

Blockchain networks consist of interconnected nodes that
collectively adhere to a consensus protocol to maintain the
ledger’s integrity [30], [31]. Each record in this ledger, known as
a block, contains a timestamp and an array of transactional data
among other elements. The timestamp indicates the creation
moment of the block. Typically, transactional data includes the
details of the token exchanges between network participants.
Blocks are securely linked in chronological order via crypto-
graphic hashes, which fortify the blockchain against tampering
and facilitate the verification of all stored data.

Smart contracts, self-executing contracts with the terms of
the agreement directly written into code, are deployed on the
blockchain to automate and enforce the integrity checks of data.
When implemented for data integrity audits, smart contracts can
programmatically verify the authenticity and completeness of
the data stored in the blockchain without human intervention.
These contracts can be triggered by predefined conditions, such
as suspicious data alterations or periodic audits. Upon acti-
vation, the smart contract executes the necessary verification
protocols.
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Fig. 1. System model and workflow diagram.

IV. PROBLEM FORMULATION

In this part, we begin by presenting the scheme’s system
model, threat model, and design goals. This is followed by a
brief summary of the scheme’s framework.

A. System Model

The proposed scheme’s system model comprises four enti-
ties: KGC, users, CSP and blockchain. Fig. 1 depicts the system
model for the proposed scheme. We define them as follows:

• KGC: KGC stands for Key Generation Center, which
generates a unique private key for each user joining the
system.

• User: Users outsource encrypted data to the CSP. Since
different users may outsource the same file, all users can
be categorized into initial uploaders, who outsource files
not yet stored by the CSP, and subsequent uploaders, who
outsource files that have already been stored by the CSP.

• CSP: The CSP provides storage services to users and
executes deduplication algorithms. When interacting with
the subsequent uploader, the CSP initiates an ownership
verification challenge to ensure that he is the true owner
of the file data. During an audit, it receives challenge
information to generate and publish audit proofs.

• Blockchain: The blockchain maintains a decentralized
ledger system and supports smart contracts signed by data
owners and the CSP for data integrity auditing.

Interaction logic of entities in the system model: The Key
Generation Center (KGC) sends a private key to each user
joining the system. After encrypting a file, the user uploads
it to the Cloud Service Provider (CSP). The CSP determines
whether the file is already stored to confirm whether the user
is the initial uploader or a subsequent uploader and verifies
the user’s legitimacy. During file recovery, the encryption key
for the file is reconstructed using the Identity-Based Broadcast
Encryption (IBBE) method and the user’s private key (assigned
by the KGC), enabling decryption of the original file. For data
auditing, a smart contract initiates an audit challenge for files
stored on the CSP, and the audit results are published on the
blockchain.

B. Threat Model

In this section, we introduce the threat model.
• Semi-honest users: Since the data on a blockchain is

publicly accessible, there is a potential risk that users
can snoop on the ownership privacy of other users in the
blockchain.

• Semi-honest CSP: In cases where stored file data is lost
due to hardware issues or other potential problems, the
CSP, to maintain its reputation, might claim to have stored
the data well and forge false audit proofs during an audit.

Furthermore, we assume that the CSP will not collude with
any users.

C. Design Goals

In this paper, we design a deduplication scheme that also
supports auditing operations. Based on this, we achieve the
following design objectives:

• Security of Outsourced Data: Ensure that the CSP can-
not recover the plaintext or infer the contents of the data
files.

• Deduplication: To reduce storage overhead in the cloud,
identical files and identity verification tags are not stored
repeatedly.

• Auditing: Allow users to audit the integrity of their out-
sourced data, ensuring the reliability of the audit results.
Moreover, instead of relying on a TPA, the auditing pro-
cess is performed through a smart contract.

• Privacy Protection of Identical Information: Entities
other than the CSP cannot determine which users possess
the same files, protecting users’ ownership privacy.

• Key Management on the User Side: Reduce the key
management costs on the user side, ensuring that the num-
ber of keys stored by users is independent of the number
of files they own.

V. THE PROPOSED SCHEME

A. Scheme Overview

In the scheme by Yang et al. [32], they use randomized file
tags, building on this, we can further randomize the audit proofs
to protect the privacy of user file ownership. Additionally, we
use IBBE technology can avoid reliance on a key server. Table I
summarizes the important notations used in this paper.

Initially, the KGC generates a private key for users joining
the system. Before uploading files, users encrypt the files and
upload them along with file tags. The CSP then determines if
the outsourced file already exists. The initial uploader sends the
ciphertext, file tags, authentication tags, and audit keys to CSP.
Additionally, they apply broadcast encryption to key KC , thus
allowing other system users to decrypt it. Subsequent uploaders
must accept an ownership verification challenge from the CSP.
Upon passing the challenge, the CSP adds them to the file
owner list. When recovering data, the user sends a download
request to the CSP. The CSP first checks whether the user is
legitimate, then returns the encrypted data to the user. Next, the
user can recover the encryption key and decrypt the file. During
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TABLE I
NOTATIONS AND THEIR DESCRIPTIONS

Notation Description

F The original plaintext to be outsourced.
c The ciphertext of F stored in the cloud.
ci The i-th block of ciphertext C.

pku,f The public key of user U for delegating
auditing, and f represents the file F. The
same applies below.

aku,f The audit key of U for file F .
ζu,f The random file tag of F generated by U .
Kc Encrypt the file encryption key.
p A large prime number.
Zp A residue class ring.

G1,G2 Two multiplicative cyclic groups.
kl The file encryption key.
sF The collection of user identities that

possess the same file.
s The number of sectors in a data block.

KIBBE A IBBE key, used for the encryption of
convergent keys.

H1(·), H2(·), H3(·), H4(·) Hash functions.
π1(·), π2(·) Two pseudo-random functions.

e(·, ·) Bilinear pairing e: G1 × G1 → G2.

an audit, the smart contract sends challenge information and
other data to the CSP. After receiving the audit proof, it verifies
its correctness and publishes the audit results.

B. System Setup

The trusted KGC generates private keys for users, and then
generates other system parameters.

1) KGC System Initialization: Specifically, the KGC runs a
parameter generator Gen(κ), then it outputs a tuple (G1, G2,
e), where G1 and G2 are two finite cyclic multiplicative groups
of prime order p and e: G1 ×G1 →G2 denote a bilinear map,
where p is a large prime number.

The KGC establishes the cryptographic framework by initial-
izing the following parameters and protocols:

• A large prime number m is selected, along with a secret
value γ from Z

∗
p, and generators g1, g2, h from G1.

• An element χ ∈G1 is defined, and � = gγ2 is computed.
• The master key is established as γ.
• A unified chunking strategy is implemented to ensure that

users with identical files obtain identical chunks.
• Four hash functions are selected: H1 : {0, 1}∗ → Z

∗
p, H2 :

{0, 1}∗ → Z
∗
p, H3 : {0, 1}∗ → Z

∗
p, H4 : {0, 1}∗ →G1 and

dynamic pseudorandom functions are selected for different
numbers of blocks n allocated to different files, where n
refers to the number of blocks:

π1 : {1, . . . , n} × Z
∗
p →{1, . . . , n},

π2 : {1, . . . , n} × Z
∗
p → Z

∗
p.

The public parameters pp of the system are published:

pp=(�, v=e(g2, h), h, h
γ , . . . , hγm

, H1, . . . , H4, π1, π2, χ).

2) User Registration: When a new user Ut with identity
IDt joins the system, the KGC generates a secret key for them
as follows:

skIDt
= g

1
γ+H1(IDt)

2 .

In subsequent stages, users can use their private key skIDt
to

recover the file encryption key.

C. Data Uploading

The data uploading algorithm is divided into two parts: initial
upload and subsequent upload. A user uploads his file data to
the CSP, which then checks if the file has already been stored,
thus distinguishing the type of data upload. Specifically, data
upload process is as follows: user Ut selects xt, st ∈ Zp and
configures the audit key akt,f = {xt, st} and randomly selects
rt ∈ Zp. Ut computes KC =H2(F ) and the file tag tagt,f =
gKC
1 , besides,Ut then computes a random file tag ζt,f = gKC ·rt

1 .
Then Ut sends the file tag tagt,f and the random file tag ζt,f to
the CSP. The CSP checks whether the file F has already been
stored by verifying whether the file tag tagt,f exists.

If, upon inspection, it is found that the file tag already ex-
ists, it indicates that the Cloud Service Provider has previously
stored the same file. Consequently, a message stating “File
Duplicate” will be returned to the uploader. Conversely, if, upon
inspection, the file tag is found to be absent, it implies that the
CSP has not stored the file previously, and a message stating
“File Not Duplicate” will be returned to the uploader.

1) Initial Upload: Assuming the file uploaded by user UA

is verified by the cloud and has not yet been stored, consider
UA as the initial uploader; UA collaborates with the CSP to
carry out the protocol for the initial data file upload. UA first
randomly selects kl ∈ Z

∗
p as the file’s encryption key, generates

the ciphertext c= Enc(kl, F ), and then encrypts kl through
Kl = kl ⊕KC , note that the key kl here is integrated, and l does
not have an independent meaning; it is only used to distinguish
it from the notation of other keys. Subsequently, UA calculates
the public key pka,f = g

H3(kl)·sa
1 and divides the ciphertext c

into n blocks where each block possess s sectors and then gen-
erate authentication tags {τi}1≤i≤n for each ciphertext block
{ci,j}1≤i≤n,1≤j≤s as follows, where ci is the i-th ciphertext
block and s is the number of sectors in the block:

τi = [H4(ci||i) · χ
∑s

j=1 ci,j ]H3(kl), 1≤ i≤ n (1)

User UA randomly selects kF ∈ Z
∗
p and generates the IBBE

header Hdr = (CF1
, CF2

) = (�−kF , h(γ+H1(IDA)kF ), then
encrypts kF using symmetric encryption: dF←Enc(KC , kF ),
and encrypts KC with the IBBE key KIBBE = vkF to
produce ckF . UA sends (IDA, c,Kl, {τi}, HdrF , dF , ckF ,
aka,f , pka,f ) to the CSP.

The CSP randomly selects a seed θ from Z∗
p , and subse-

quently generates a random number ai = π2(i, θ), where 1≤
i≤ n, and verifies whether the following equation holds:

e

⎛
⎝

n∏
i=1

(H4(ci||i)ai ·
s∏

j=1

χai·ci,j ), pka,f

⎞
⎠

?
= e

(
n∏

i=1

τai
i , gsa1

)
(2)

If the verification passes, H1(IDA) is added to sF ; Otherwise,
the CSP rejects this storage request.
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Fig. 2. Initial upload.

2) Subsequent upload: Assuming user UB is a subsequent
uploader, then UB will interact with the CSP to execute the
Proof of Ownership protocol (PoW). The specific process is
as follows:

• The CSP selects two random seeds, r1 and r2, from Z
∗
p

and a random number l1 within the range [1, n];
• Then, the CSP transmits the challenge data Chal(x) =
{r1, r2, l1} along with Kl to user UB ;

• User UB first computes KC =H2(F ), then uses the key
KC to recover kl (kl =Kl ⊕KC), and subsequently en-
crypts file F into ciphertext c using kl; user UB uses the
challenge information to compute random numbers ai =
π1(i, r1), bi = π2(i, r2) for each 1≤ i≤ l1 and calculates

⎧⎪⎪⎨
⎪⎪⎩

pj =
∑l1

i=1 bi · cai,j , (1≤ j ≤ s)

ϑ=
∑s

j=1 pj

Γ =
∏l1

i=1 H4(cai
||ai)bi

(3)

• User UB randomly selects xb, sb ∈ Zp, and sets akb,f =

xb, sb and pkb,f = g
H3(kl)·sb
1 .UB then sends Proof (x) =

{Γ, ϑ}, audit keys akb,f and public key pkb,f to the CSP;
• The CSP also computes ai = π1(i, r1), bi = π2(i, r2) for

each 1≤ i≤ l1 and Ψ=
∏l1

i=1 τ
bi
ai

and verifies if the equa-
tion (4) holds:

e(Γ · χϑ, pkb,f )
?
= e(Ψ, gsb1 ) (4)

• If the verification by the CSP fails, then user UB is not a
legitimate owner of the file; otherwise, the CSP computes
(5) and returns {dF , Hdr, CF } to UB .

CF = h
∏si

j=1(γ+H1(IDj))(γ+H1(IDB)) (5)

Since the CSP does not know the secret value γ, it can-
not directly obtain the result of CF through equation (5).
However, it can be derived through the following steps:

CF = h
∏si

j=1(γ+H1(IDj))(γ+H1(IDB))

= h(γ+H1(ID1))·(γ+H1(ID2))·····(γ+H1(IDB))

= hγsi · hH1(ID1)·····H1(IDB)

·hγsi
∑si+1

j=1 H1(IDj)+γ(si−1)∑si+1

j,t=1H1(IDj)H1(IDt)+...

By substituting the aforementioned system public param-
eters, the result of CF can be computed.

Fig. 3. Subsequent upload.

• Upon receipt, user UB decrypts dF : kF ←Dec(KC , dF ),
calculates C

(new)
F2

= CkF

F , and verifies the validity of

C
(new)
F2

through the following equation:

e
(
C

(new)
F2

, h
)

?
= e

(
CF2

, hγ+H1(IDB)
)

(6)

After successful verification, user UB sets Hdr′ =
(CF1

, C
(new)
F2

) and sends it to the CSP;
• In this refined approach, CSP updates the file header by

setting HdrF to Hdr′, and subsequently incorporates
H1(IDB) into the set sF .

D. Data Integrity Auditing

CSP and the data owner Ut establish a smart contract, which
defines the random file tag ζt,f of user Ut and the public key
pkt,f of file F . Upon activation, the smart contract generates
unique seeds for the indexes and coefficients corresponding to
the data blocks. Then, these challenge messages are conveyed
to the CSP. Upon receiving the parameters, the CSP retrieves
the relevant data blocks and generates a data integrity proof,
which is then transmitted back to the smart contract by the
CSP. In the described scenario, the user sends a commission,
referred to as deposituser, to the smart contract, and concur-
rently, the CSP sends a deposit, depositCSP, to the same con-
tract. If the data integrity check during the audit process is
successful, the smart contract automatically transfers the user’s
commission, deposituser, as an auditing fee to the miner and
refunds the CSP’s deposit, depositCSP. If the integrity check
fails, the smart contract deducts the CSP’s deposit, depositCSP,
and transfers it to the miner. The detailed procedure is outlined
as follows:

• The smart contract selects the nonce of the block closest
to system time t, denoted as nonce(t) and the current
number of blocks in the blockchain, num(t). The selected
information cannot be falsified or counterfeited due to the
characteristics of blockchain. The contract then computes
r3 =H1(t||num(t)) and r4 =H1(t||nonce(t)). It subse-
quently selects a random integer l2 from the range [1, n]
and issues the challenge Chal(y) = {r3, r4, l2}, IDt, ζt,f
to the CSP;

• Upon receiving Chal(y), for each index i, the CSP cal-
culates ai using π1(i, r3) and bi using π2(i, r4), and then
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proceeds to compute:⎧⎪⎨
⎪⎩

pai
=
∑l2

i=1 xt · bi · cai,j , (1≤ j ≤ s)

Ψ̂ = (
∏l2

i=1 τ
bi
ai
)st·xt

Γ̂ = (
∏l2

i=1 H4(cai
||ai)bi)xt

(7)

The CSP then sends the computed proof Proof (y) =
{Γ̂, Ψ̂, {pai

}1≤i≤l2} along with ζt,f back to the smart
contract;

• Upon receiving the proof, the smart contract executes
Algorithm 1. The smart contract calculate ϑ̂=

∑s
j=1 pai

and then verifies the validity of the proof using the
equation:

e(Γ̂ · χϑ̂, pkt,f )
?
= e(Ψ̂, g1) (8)

Depending on the outcome, the contract either publishes
(ζt,f , integral) if the proof is valid, or (ζt,f , non-integral)
if the proof fails.

E. Data Retrieval

User Uy dispatches a download request denoted as
download〈IDy, ζy,f 〉 to the CSP. Initially, the CSP validates
the presence of the user within the system sF ; if the user is not
recognized, the request is denied and the process terminates.
Conversely, if the user is validated, the CSP locates files based
on random file tags, subsequently transmitting the data tuple
{c, ckF ,Kl, Hdr, sF } to Uy .

Upon receipt, Uy first recovers the negotiate key KIBBE

and utilizes this to derive the cipher key KC via the decryp-
tion KC ←Dec(KIBBE , ckF ). Following this, Uy computes
the logical XOR between Kl and KC , recovering the key
kl =Kl ⊕KC , which is then used to decrypt the ciphertext c,
thereby regenerating the original file F ←Dec(kl, c).

To ensure the integrity and authenticity of the retrieved file
F , Uy calculates K ′

C =H2(F ) and confirms its equivalence to

KC , as indicated by determining whether K ′
C

?
=KC holds. The

IBBE key KIBBE in the system can be recovered through the
following method: Assuming s′F = sF − {H1(IDy)} and let

SF be |sF |, S′
F be |s′F |, then we define ps(γ) =

1
γ (
∏S′

F
j=1(γ +

H1(IDj))−
∏S′

F
j=1 H1(IDj)), note that j 	= y. Then, KIBBE

can be recovered as follows:

[e(CF1
, hps(γ)) · e(skIDy

, CF2
)]

1

∏S′
F

j=1,j �=y
H1(IDj)

=

[
e

(
�−kF , h

1
γ

(
∏S′

F
j=1(γ+H1(IDj))−

∏S′
F

j=1 H1(IDj)

))

·e
(
g

1
γ+H1(IDy)

2 , hkF

∏SF
j=1(γ+H1(IDj))

)] 1

∏S′
F

j=1,j �=y
H1(IDj)

=

[
e

(
g−γkF

2 , h
1
γ

(
∏S′

F
j=1(γ+H1(IDj))−

∏S′
F

j=1 H1(IDj)

))

·e(g2, h)
kF

∏SF
j=1

(γ+H1(IDy))

γ+H1(IDy)

] 1

∏S′
F

j=1,j �=y
H1(IDj)

=

[
e(g2, h)

kF

∏S′
F

j=1 H1(IDj)

] 1

∏S′
F

j=1,j �=y
H1(IDj)

= e(g2, h)
kF = vkF =KIBBE

Through the aforementioned calculations, the IBBE key
KIBBE can be recovered.

VI. SCHEME ANALYSIS

In this section, we discuss the correctness of the proposed
scheme and perform a security analysis.

A. Analysis of Correctness in Auditing

Suppose a smart contract initiates an audit challenge, dis-
patching the requisite challenge parameters to CSP. Upon the
receipt of the audit proof from the CSP, the smart contract
undertakes the verification of data integrity by assessing the
validity of the equation (8). The procedure for this verification
is executed by the smart contract as delineated below:

e
(
Γ̂ · χϑ̂, pka,f

)

= e

⎛
⎝

l2∏
i=1

(H4(cai
||ai)xa ·

s∏
j=1

χxa·cai,j )bi , g
H3(kl)·sa
1

⎞
⎠

= e

(
l2∏
i=1

H4(cai
||ai)bi · χ

∑s
j=1 ·

∑l2
i=1 bi·cai,j , g

H3(kl)·sa·xa

1

)

= e

⎛
⎝

l2∏
i=1

(((H4(cai
||ai) ·

s∏
j=1

χcai,j )H3(kl)))bi , gsa·xa
1

⎞
⎠

= e

⎛
⎝

l2∏
i=1

(((H4(cai
||ai) ·

s∏
j=1

χcai,j )H3(kl)))bi·sa·xa , g1

⎞
⎠

= e(Ψ̂, g1)

From the above calculations, it is evident that e(Γ̂ ·
χϑ̂, pka,f ) = e(Ψ̂, g1). Through such calculations, the smart
contract verifies the integrity of data based on the audit proof
provided by the CSP, ensuring the correctness of the auditing
process.

B. Security Analysis

We discuss the security aspects of the proposed scheme
as follows:

Theorem 1: The proposed scheme secures the confidentiality
of data and the privacy of users’ data ownership.

Proof: In the proposed scheme, users encrypt files c←
Enc(kl, F ), where kl is randomly chosen from Z

∗
p by the users.

The CSP cannot derive the key kl, thus cannot recover the plain-
text F . During auditing, the plaintext data is not disclosed to the
CSP, nor can the CSP deduce plaintext F during interactions
with the smart contract. Furthermore, based on the information
contained in the audit proofs returned by the CSP, Proof (y) =

{Γ̂, Ψ̂, {pai
}1≤i≤l2}, where pai

=
∑l2

i=1 xt · bi · cai,j , (1≤
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j ≤ s), Ψ̂ = (
∏l2

i=1 τ
bi
ai
)st·xt , Γ̂ = (

∏l2
i=1 H4(cai

||ai)bi)xt , no
adversary can derive any useful information about the plaintext.

As mentioned in section IV-B, attackers could potentially
infer from random file tags or audit logs whether different users
possess the same file. We will next analyze how the proposed
scheme prevents violations of users’data ownership privacy. We
assume that the challenge information sent to the CSP by the
smart contract during auditing remains unchanged; that is, when
conducting audits for users t and t#, both send identical cipher-
text c and the same questioned blocks and random coefficients
to the CSP. Despite these similarities, it remains impossible to
deduce from the audit outcomes that t and t# hold the same file.

Assume that users t and t# each possess the same file F ,
and independently generate random file tags ζt,f and ζ(t#,f#)

for F , it is computationally infeasible for any probabilistic
polynomial-time adversary to distinguish ζt,f and ζ(t#,f#) from
random elements in G1, nor to associate ζt,f and ζ(t#,f#) with
the same file F . Therefore, no effective file ownership privacy
information can be derived from the random file tags of users
t and t#.

In data integrity auditing, the audit proofs generated with
different users’ audit keys are distinct. Users t and t# each
randomly select their audit keys, {xt, st} and {x(t#), s(t#)},
respectively. Therefore, the audit proofs received by users t and
t#, due to the differences in xt and x(t#), result in different pai

and Γ̂, and due to the differences in both xt, x(t#), st, and s(t#),
Ψ̂ are also different. Hence, it’s impossible for all users to infer
from the audit proofs Proof (y,t) = {Γ̂t, Ψ̂t, {pai

}1≤i≤l2} and
Proof (y,t#) = {Γ̂(t#), Ψ̂(t#),

ˆ{pai
}1≤i≤l2

} that users t and t#

own the same file F . Thus, the auditing process also does not
leak ownership privacy. In summary, the proposed scheme sat-
isfies data confidentiality and protects users’ ownership privacy.

Theorem 2: The proposed scheme achieves deduplication
of tags.

Proof: In this paper, the authentication tags are defined
as τi = [H4(ci||i) ·

∏s
j=1 χ

ci,j ]H3(kl), 1≤ i≤ n, where kl ←
Kl ⊕KC , and KC =H2(F ). Therefore, as long as subsequent
uploaders are genuine owners of the file F , they can recover the
file’s encryption key kl, thus ensuring that identical authentica-
tion tags can be generated. Consequently, the CSP needs to store
the set of authentication tags {τi}(1≤i≤n) only once. There-
fore, the proposed scheme has achieved the goal of eliminating
duplicate authentication tags.

Theorem 3: Under the assumption that the discrete logarithm
(DL) holds true, it is impossible for the CSP to parse the signing
key in order to successfully meet the audit challenge.

Proof: The proposed scheme ensures the reliability of audit
results. As described in section V-B, the signing key for authen-
tication tags {τi}(1≤i≤n) is ε=H3(kl), where kl is randomly
chosen by user t, and CSP cannot directly know and obtain it.
If CSP somehow obtained the signing key ε, it could generate
audit proofs with forged ciphertexts and authentication tags to
deceive the smart contract. We analyze how CSP could possibly
obtain ε. According to the proposed scheme, user t sends the
random file tag ζu,f , the public key pkt,f , and the audit key
akt,f to CSP.

For the file tag ζt,f = gKC ·rt
1 , It is clear that the random file

tags do not contain information about the signing key ε.
For the public key pkt,f = g

H3(kl)·st
1 , since CSP knows the

audit key akt,f = {xt, st} and has parameter g1, it can compute
gst1 . Viewing gst1 as g and the public key pkt,f = g

H3(kl)·st
1 as

gε, it is evident that deriving ε is equivalent to addressing the
Discrete Logarithm (DL) problem, a task that is unachievable
for any probabilistic polynomial-time adversary. Consequently,
the CSP is unable to access this signing key, thus securing ε.

Further assuming ε is secure and unknown to CSP, CSP might
compute a false signing key ε′ to sign forged ciphertext c′

as follows:

τ ′i =

⎡
⎣H4(c

′
i||i) ·

s∏
j=1

χc′i,j

⎤
⎦
ε′

, 1≤ i≤ n

CSP then generates an audit proof Proof ′ = {Γ̂′, Ψ̂′,
{p′ai

}1≤i≤l2} for this forged ciphertext and authentication
tags:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p′ai
=
∑l2

i=1 xt · bi · c′ai,j
, (1≤ j ≤ s)

Ψ̂′ =
(∏l2

i=1 τ
′bi
ai

)xu·st

Γ̂′ =
(∏l2

i=1 H4(c
′
ai
||ai)bi

)xt

The smart contract verifies the audit proof Proof ′ through the
following equations:

e
(
Γ̂′ · χϑ̂′

, pku,f

)

= e

(
l2∏
i=1

H4(c
′
ai
||ai)bi · χ

∑s
j=1 ·

∑l2
i=1 bi·c′ai,j , gε·su·xt

1

)

	= e

(
l2∏
i=1

H4(c
′
ai
||ai)bi · χ

∑s
j=1 ·

∑l2
i=1 bi·c′ai,j , gε

′·st·xt
1

)

= e(Ψ̂′, g1) (9)

From the aforementioned equation (9), it is known that since
ε 	= ε′, therefore e(Γ̂′ · χϑ̂′

, pkt,f ) 	= e(Ψ̂′, g1). As a result, the
CSP cannot generate a corresponding audit proof to deceive the
smart contract by forging ciphertext and authentication tags.
Therefore, the proposed scheme ensures the reliability of the
audit results. One more point, when CSP verifies the uploader’s
file ownership in the subsequent upload stage, the user cannot
pass the challenge by forging the ciphertext. Specifically, when
a subsequent uploader uploads a file, the CSP verifies its file
ownership by the equation (4), calculated as follows.

e
(
Γ · χϑ, pkb,f

)

= e

(
l1∏
i=1

H4(cai
||ai)bi · χ

∑s
j=1 ·

∑l1
i=1 bi·cai,j , gε·sb1

)

	= e

(
l1∏
i=1

H4(c
′
ai
||ai)bi · χ

∑s
j=1 ·

∑l1
i=1 bi·c′ai,j , gε·sb1

)

= e(Ψ, gsb1 ) (10)
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TABLE II
COMPARISON OF FUNCTIONALITIES ACROSS DIFFERENT SOLUTIONS

Scheme Data confidentiality
Authentication

tag
deduplication

User offline Key management
Protection of

ownership
privacy

Audit without TPA

Xu et al.’ scheme
[7]

No Yes Yes No No No

Tian et al.’
scheme [6]

Yes Yes No No No No

Yuan et al.’
scheme [5]

Yes No No No No Yes

Our proposed
scheme

Yes Yes Yes Yes Yes Yes

TABLE III
COMPARATIVE ANALYSIS OF COMPUTATIONAL COSTS FOR USERS IN THE DATA UPLOADING PROCESS

Scheme
All uploaders

Initial uploader Subsequent uploader
key generation file tag generation

Xu et al.’ scheme [7] — th n(2th + tg + 2tx) l1(2tr + ta + tz + tg + tx)

Tian et al.’ scheme [6] nth th + tx 2n(th + tx) + n(tg + 2tc)
l1(2tr + 2tc + th+

tz + tg + tx + ta)
Yuan et al.’ scheme [5] nth + tx + tb th n(2th + tg + tc + 2tx) n(2th + tg + tc + 2tx)

Our proposed scheme th tx + tg
n(th + tg + 2tx + sta)+

3tx + ta + tg + 3tc

l1(2tr + sta + tg + th + tx)

+ stz + th + 3tc + tx + tb

TABLE IV
COMPARISON OF COMPUTATIONAL OVERHEADS DURING THE AUDITING PHASE

Scheme User CSP
Xu et al.’ scheme [7] l2tr l2(2tr + 2tx + ta + tg + tz)

Tian et al.’ scheme [6] ntg + (n+ 1)tx l2(2tr + th + tz + ta)
Yuan et al.’ scheme [5] l2tr l2(2tr + tz + ta + tx + tg) + th + hm

Our proposed scheme — l2(2tr + 2tx + ta + tz + 2tg + th) + 2tz + 2tx

It is also easy to see that only when the ciphertext is the
same, the user can pass the ownership verification. It can be
seen that the reliability of ownership verification is satisfied.
Finally, the proposed scheme also guarantees that the file F
recovered by the user from the CSP is correct, as explained in
section V-E.

VII. THEORETICAL ANALYSIS AND PERFORMANCE ANALYSIS

A. Functionality and Theoretical Analysis

In this section, we conduct a functional comparison between
the proposed scheme and schemes [5], [6] and [7]. Addition-
ally, we analyzed the theoretical performance of the proposed
scheme and the comparative schemes in terms of computational
cost, communication cost, and storage cost.
Functionality: The proposed scheme encompasses the follow-
ing functionalities: users encrypt their data before uploading it
to the cloud, and an auditing functionality is implemented to
ensure the integrity of the data stored in the cloud, the CSP
performs duplicate data checks on outsourced data to avoid re-
dundant storage. After the initial uploader uploads the data, sub-
sequent uploaders possessing the same file data are challenged
by the cloud for ownership verification upon attempting to up-
load this file, thereby achieving deduplication of encrypted data

and authentication tags. Moreover, the proposed scheme can
always protect the privacy of user file ownership. A functional
comparison between the proposed scheme and other schemes
is shown in Table II.
Computation cost: Assume tx, tr, th, tz , tg , ta, tb, tc re-
spectively denote the computational overhead of exponentiation
in G1, generating pseudorandom numbers, hashing operations,
multiplication operations in Zp, multiplication operations in
G1, addition operations in Zp, bilinear mapping operations, and
AES-256 operations. The comparison results are as illustrated
in the Tables III and IV. During the key generation phase,
the initial uploader in the proposed scheme randomly selects
a key kl, then computes KC =H2(F ), and finally performs
an XOR operation to obtain Kl. Subsequent uploaders can use
their private keys to recover the negotiated key KIBBE , which
then allows them to further recover the key kl. In Xu et al.’s
scheme [7], due to the execution of plaintext deduplication, no
encryption operation is performed on the files. Consequently,
users incur zero overhead during the key generation phase.
The computational overhead in Yuan et al.’s scheme [5] is
nth + tx + tb, in Tian et al.’s scheme [6] it is nth, and in the
proposed scheme, it is th. In the generation of file tags, the
proposed scheme utilizes KC and a random number r to com-
pute the file tag tagt,f = gKC

1 and random file tag ζt,f = gKC ·r
1 ,
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TABLE V
COMPARISONS OF USER COMMUNICATION OVERHEAD

Scheme Initial Upload With CSP Subsequent Upload With CSP Data Retrieval From CSP
Xu et al.’ scheme [7] |M |+ n|G1|+ |Zp| 4|Zp| |M |

Tian et al.’ scheme [6] |C|+ (n+ 1)|G1|+ n|Zp| |G1|+ (2n+ 2)|Zp| |C|+ n|Zp|
Yuan et al.’ scheme [5] |C|+ n|G1|+ 2|Zp| |C|+ n|G1|+ 2|Zp| |C|
Our proposed scheme |C|+ (n+ 7)|G1|+ 3|Zp| 8|G1|+ 6|Zp| |C|+ 4|G1|

TABLE VI
COMPARISON OF STORAGE OVERHEADS

Scheme User CSP Blockchain
Xu et al.’ scheme [7] F |Zp| |M |+ n|G1|+ |Zp| |G1|+ 6|Zp|

Tian et al.’ scheme [6] (F + 1)|Zp|+ F |G1| (n+ 1)(|G1|+ |Zp|) + |C| |G1|+ 5|Zp|
Yuan et al.’ scheme [5] (2 + Fn)|Zp| U(n+ 1)|G1|+ |C| 5|G1|+ |Zp|
Our proposed scheme (F + 1)|G1| (n+ 7)|G1|+ 3U |Zp|+ |C| |3G1|+ 3|Zp|

with a computational overhead of tx + tg. The computational
overhead in scheme [7] is th, in scheme [5] is th, and in scheme
[6], it is th + tx.

During the upload phase, if the uploader is the initial up-
loader, the primary overhead comes from encrypting all data
blocks and signing all ciphertext blocks, resulting in a computa-
tional overhead of n(2th + tg + 2tx + sta) + 3tx + ta + tg +
3tc in the proposed scheme. In scheme [7], the computation
overhead is n(2th + tg + 2tx), in scheme [5], the computa-
tional overhead is n(2th + tg + tc + 2tx), and in scheme [6],
it is 2n(th + tx) + n(tg + 2tc).

If the uploader is a subsequent uploader, the main
overhead in the proposed scheme comes from computing
the ownership proof and updating the broadcast encryption
header. The computational overhead of the proposed scheme
is l1(2tr + sta + tg + th + tx) + stz + th + 3tc + tx + tb. In
Scheme [7], the computational overhead is l1(2tr + ta + tz +
tg + tx), in scheme [5], the computational overhead during this
stage is the same as that for the initial uploader, n(th + tg +
tc + 2tx), and in scheme [6], it is l1(2tr + 2tc + th + tz +
tg + tx + ta).

During the auditing phase, the proposed scheme does
not require user participation, thus incurring no computa-
tional overhead for the user. CSP’s computational overhead
is l2(2tr + 2tx + ta + tz + 2tg + th) + 2tz + 2tx. In scheme
[7], the user’s computational overhead is l2tr, the CSP’s com-
putational overhead is l2(2tr + 2tx + ta + tg + tz). In scheme
[5], the user’s computational overhead is l2tr, the CSP’s com-
putational overhead is l2(2tr + tz + ta + tx + tg) + th + hm.
In scheme [6], the user’s computational overhead is ntg + (n+
1)tx, the CSP’s computational overhead is relatively low, which
is l2(2tr + th + tz + ta).
Communication cost: The communication overhead compar-
ison of different schemes is as follows Table V. Since the
proposed scheme does not require interaction with the key
server during the key generation phase, there is no communica-
tion overhead at this stage, in the comparison schemes [5] and
[6], users interact with the key server to generate convergent
keys for each of the n blocks that the file F is divided into,
resulting in a communication overhead of nZp, and in the

comparison scheme [7] involves plaintext data uploads without
encrypting the data, and thus does not incur any communication
overhead with the key server. In the initial upload phase, users
will upload a ciphertext of length |C|, an authentication tag of
(n|G1|) bits, a file tag of |G1| bits, a random file tag of |G1| bits,
a public key of |G1| bits, an audit key of (2|Zp|) bits, a key Kl

of |G1| bits, an HdrF header of (2|G1|) bits, a key dF of |Zp|
bits, and a key ckF of |G1| bits. For subsequent uploaders, users
need to receive a challenge message of (2|Zp|) bits, a key Kl

of |G1| bits, and an HdrF header of |G1| bits; upload a file tag
of |G1| bits, a random file tag of |G1| bits, a file public key of
|G1| bits, an audit key of (2|Zp|) bits, a file ownership proof of
(|G1|+ 2|Zp|) bits, and an HdrF header of (2|G1|) bits. In the
data recovery phase, users need to download from the cloud a
ciphertext of length |C|, and 4|G1| bits of other necessary data,
ckF , the key Kl, and the HdrF header.
Storage cost: Let F represent the number of files and U
denote the number of users owning the same file. In scheme
[5], since all users generate their own identity authenticators
and need to store them, the storage overhead is related to both
the number of users and the number of blocks. On the CSP side,
the storage overhead is U(n+ 1)|G1|+ |C|. In the proposed
scheme, the authenticator is related to the file, not to the user’s
private keys, making the storage cost of the proposed scheme
(n+ 7)|G1|+ 3U |Zp|+ |C|. On the user side, in scheme [7]
users do not encrypt the file F , consequently, there is no over-
head for storing encryption keys. The only storage requirement
is for the file tag t, which has a size of F |Zp|. Scheme [5]
requires storing keys (x, ssk) and Fn convergent keys, with a
storage cost of (2 + Fn)|Zp|, scheme [6] requires storing t, t∗,
sk, with a storage cost of (F + 1)|Zp|+ F |G1|. In the proposed
scheme, users need to store their private key and the file tag ζ,
resulting in a storage cost of (F + 1)|G1|.

B. Performance Analysis

We establish a series of experiments to perform performance
evaluations, testing the on-chain and off-chain computational
costs associated with all comparison schemes. We implement
the proposed scheme and the comparison schemes using Python

Authorized licensed use limited to: Anhui University. Downloaded on July 03,2025 at 05:51:46 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: BLOCKCHAIN-BASED PRIVACY-PRESERVING DEDUPLICATION AND INTEGRITY AUDITING IN CLOUD STORAGE 1727

Fig. 4. Comparisons of on-chain operation cost.

TABLE VII
SUMMARY OF EXPERIMENTAL PARAMETERS

Parameter Description Value

Data size Total size of file data 512 KB∼10 MB
Block size Size of each data block 1 KB
Sector size Size of each sector in a block 128 B
Algorithm Hashing algorithm used SHA-256
Hardware
environment

Experimental device configuration i7-12700 CPU
(2.10 GHz),
8 GB RAM

by invoking the charm-crypto Library1, which relies on the
GNU Multiple Precision Arithmetic Library (GMP)2 and the
Pairing-Based Cryptography Library (PBC)3, and we select
the BN254 curve for performing pairing operations. The hash
function used to generate the encryption key is SHA-256, and
the symmetric encryption algorithm is AES-256. We test the
gas cost of on-chain operations by deploying a smart contract
using Solidity. The computational cost for users is assessed on a
desktop computer equipped with an i7-12700 CPU (2.10 GHz)
and 8GB of memory, running the Ubuntu operating system. In
the simulation, we configure the number of challenged blocks
in the Proof of Ownership (PoW) challenge and the audit chal-
lenge to be 1/3 of the total number of blocks, with each block
size set to 1KB and sector size set to 128B. All experiments are
conducted 50 times to obtain the average computational results.

1) On-Chain Part Costs: We evaluate the on-chain compu-
tational cost, i.e., gas cost, for all schemes when uploading a
5MB file. The on-chain gas costs for all schemes are shown in
the Fig. 4.

Scheme [6] and scheme [7] require the creation of an index
table on the blockchain during the data upload phase, but the
proposed scheme needn’t create it, resulting in no gas cost at
this stage. In the audit proof verification phase, we simulated the
comparison schemes and the proposed scheme verifying audit
proofs on-chain, among the all schemes, the gas overhead of
the scheme [5] is the highest. This is attributed to the fact that
their scheme performs more computations on the blockchain.
Ultimately, in the total gas expenditures for all schemes, scheme

1https://github.com/JHUISI/charm.
2https://gmplib.org/.
3https://crypto.stanford.edu/pbc/download.html.

Fig. 5. Initial upload.

Fig. 6. Subsequent upload.

[5] had the highest costs, while the proposed scheme was
marginally lower than comparison schemes.

2) Off-Chain Part Costs: We further analyze the off-chain
computational costs of all schemes, including initial data up-
load, subsequent data upload and generating audit proofs.

During the data upload phase, all schemes are divided into
two parts: initial upload and subsequent upload, and the com-
putational costs are shown in Fig. 5 and Fig. 6, respectively.
During the initial upload phase, all schemes take over 14 sec-
onds for files of size 10MB. Our scheme ranks second in terms
of overhead because we optimized the computational cost of
the key generation process. In our scheme, we randomly select
kl to encrypt the file without requiring the computation of the
message-locked encryption key generation algorithm. However,
our scheme incurs additional computational overhead due to the
identity-based broadcast encryption performed. The total time
for initial upload includes key generation, encrypting file F into
ciphertext, generating file tags and the authentication tags. In
the proposed scheme, during the initial upload, the user ran-
domly selects a key kl to encrypt file F and all other legitimate
owners of the file can use their private keys to recover the key kl,
the overhead of key generation in the proposed scheme is lower
than that of the comparison schemes. From the experimental
results, it can be observed that during initial upload phase the
computational overhead of our proposed scheme is slightly
higher than that of scheme [7], while remaining lower than the
computational overheads of both scheme [5] and scheme [6].

As scheme [5] executes the same steps during subsequent
uploads as in the initial upload phase, it undoubtedly incurs the
highest computational overhead. Therefore, we only compare
the computational overhead of the proposed scheme with those
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Fig. 7. Proof generation in data auditing.

of scheme [7] and scheme [6] in this phase. In the subse-
quent upload phase, the user generates ownership proofs and
sends them to the CSP, the computational costs of the proposed
scheme are slightly higher than those of scheme [7] but lower
than those of scheme [6]. The computational overhead mainly
arises from ownership verification challenges. In scheme [6],
the computation of ownership proofs returned by the user is
more complex and our proposed scheme requires additional
calculations for broadcast encryption, resulting in a second-
place ranking in terms of computational overhead. For a file
size of 8MB, our scheme’s computational overhead is approx-
imately 2.2 seconds, compared to 2.1 seconds and 2.7 sec-
onds for other schemes. During the data integrity audit, the
proposed scheme involves more computations when generating
proofs, resulting in higher computational costs compared to
the comparison schemes, as shown in Fig. 7. In terms of audit
proof generation overhead, our scheme takes approximately 3.7
seconds for a file size of 8MB, compared to around 1.7 seconds
and 1.8 seconds for the other schemes. Scheme [6] minimizes
computational overhead during the proof generation phase by
offloading complex computations, such as proof aggregation, to
the proof verification phase.

VIII. CONCLUSION

In this study, a blockchain-based data integrity auditing and
deduplication scheme is proposed. The proposed scheme sup-
ports the simultaneous deduplication of duplicate files and their
authentication tags. Privacy protection measures are imple-
mented for file tags and audit proofs, to safeguard user file own-
ership privacy. Additionally, the proposed scheme leverages
identity-based broadcast encryption technology to eliminate the
need for user interaction with the key server, thereby reducing
the number of keys that users need to manage, which lowers key
management overhead. Moreover, smart contracts are used for
data integrity auditing to avoid introducing a fully trusted TPA.
In summary, the proposed scheme improves the practicality and
efficiency of cloud-storage services.
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