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Efficient Blockchain-Based Data Integrity Auditing
for Multi-Copy in Decentralized Storage
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and Debiao He

Abstract—As the disruptor of cloud storage, decentralized stor-
age could lead to a major shift in how organizations store data
in the future. To ensure data availability, users generally encrypt
the data and distribute it to multiple storage service providers. It
is necessary to study data integrity verification in decentralized
storage. Although some recent studies have proposed the using
blockchain technology to assist auditing work in decentralized
storage networks, the on-chain overhead still increases linearly with
an increase in audit requests. Blockchain networks will inevitably
be overloaded. In this study, we propose an efficient data integrity
auditing scheme for multiple copies in decentralized storage. Par-
ticularly, using different polynomial commitment schemes, we first
propose a basic scheme for verifying multiple copies of a single
file, and then we propose an efficient batch auditing scheme for
multiple copies of multiple files. Our scheme can significantly
reduce the computation overhead of storage service providers while
keeping the on-chain storage overhead constant. Security analysis
and performance analysis show that our scheme is efficient and
practical.

Index Terms—Multi-copy, data auditing, efficiency, blockchain,
decentralized storage, polynomial commitment.
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I. INTRODUCTION

S INCE the concept of cloud computing technology was pro-
posed in 2006, several Internet companies, such as Amazon,

Microsoft, and Alibaba, have commercialized cloud computing
to provide services to users. As a basic cloud computing service,
outsourced storage service attracts resource-constrained individ-
uals and enterprises to outsource their local data to the Cloud
Storage Provider (CSP), which can reduce users’ expensive local
hardware costs. Therefore, users can enjoy high-quality services
at low costs. According to the IDC’s forecast, by 2025, global
data will grow to 175 ZB, and 49% of the world’s stored data
will reside in public cloud environments [1].

Simultaneously, it has brought numerous security challenges
to storing data on the cloud. The CSP can delete a portion of
infrequently used data to save storage costs, or data loss may
occur when hardware fails. The data owner loses physical control
of the data, making it difficult to verify the data integrity [2].
Therefore, it is crucial to verify the data integrity of the CSP.
Most of the existing data integrity auditing schemes are based on
Provable Data Possession (PDP) [3] and Proof of Retrievability
(POR) [4] which have a similar idea. In simple terms, the
user generates verification tags for the chunked data and stores
them on the CSP. Then a Third-Party Auditor (TPA) initiates
a random challenge to the CSP. After the CSP generates the
corresponding certificate using the data and verification tags,
the certificate is finally submitted to the TPA for verification. In
particular, to prevent accidents and protect valuable data such
as medical data, economic data, and scientific research data,
it is necessary to generate multiple copies of the outsourced
data. When one copy is lost or damaged, it can be recov-
ered from the other copies. Cloud service companies usually
establish a central cloud manager to manage each CSP. As
a centralized manager, it usually distributes copies and inte-
grates integrity proof during the auditing process. The existing
multi-copy auditing schemes based on TPA mainly focus on
efficiently verifying the integrity of all copies at once to reduce
overhead.

However, these schemes also have some problems. 1) They are
all based on the assumption that TPA is trusted. But, TPA is gen-
erally not trusted in reality and may even collude with CSP. [5]
The above assumption is difficult to hold. 2) TPA will encounter
the problem of a single point of failure. When the TPA fails, data
integrity auditing will be unavailable. 3) These schemes assume
that the cloud manager is honest and trustworthy and does not
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collude with the CSP, which is unrealistic considering that the
cloud manager and the CSP belong to the same organization [6].

With the innovation of blockchain technology, such as Bit-
coin [7] and Ethereum [8], new ways of solving the above
problems have emerged. Benefiting from the public, transparent
and immutable characteristics of the blockchain, most existing
blockchain-based schemes publish some auditing metadata on
the blockchain and call it an audit log or audit trail. Further-
more, these schemes use smart contracts as auditors instead
of untrusted TPA for integrity verification. Also, the develop-
ment of blockchain technology brings novel storage models.
Typically, Filecoin [9] is basically a blockchain built on top of
the InterPlanetary File System (IPFS) [10] that aims to create a
more potential decentralized storage market than cloud storage.
Motivated by its incentive mechanism, the utilization of idle
storage resources and communication resources is significantly
improved. Naturally, in this more open storage model, an audit
mechanism is needed to ensure data integrity. Some research
on data integrity auditing in decentralized storage has gradually
attracted attention.

However, there is a fatal problem with these existing methods.
They use the blockchain as a transparent and immutable database
to solve trust issues and enable public verification. When the
scale of data becomes huge, the on-chain resources will be
overload, particularly the storage overhead on the blockchain.
Therefore, an efficient multi-copy auditing scheme is still re-
quired in the decentralized storage network.

A. Contributions

In summary, our contributions are as follows:
1) We propose a blockchain-based efficient data integrity

auditing scheme for multi-copy in decentralized storage,
utilizing homomorphic verifiable tag (HVT) and polyno-
mial commitment to achieve an efficient performance.

2) We designed a general and efficient decentralized auditing
paradigm that can significantly reduce the burden on the
blockchain network. Our design consists of two schemes.
The second scheme is based on the first scheme and effec-
tively addresses its shortcomings. Specifically, our scheme
can avoid linear growth of both computation overhead and
on-chain storage overhead with the number of files when
performing batch audit tasks. In particular, only a constant
128-byte on-chain storage overhead is required in each
batch audit.

3) We demonstrate the security of the proposed scheme. The-
oretical analysis and experiments show that the scheme is
efficient and feasible in decentralized storage, and it can
save blockchain resources significantly.

B. Outline

The rest of this article is organized as follows. In Section II, we
outline the related work. Subsequently, we present preliminary
and definitions in Section III. Next, we present a detailed de-
scription of the proposed scheme in Section IV. Security analysis

and performance analysis are presented in Sections V and VI.
Finally, we provide the conclusion of this work in Section VII.

II. RELATED WORK

To make data more reliable and available, the storage of
multiple copies is especially necessary. Lost or damaged copies
can be recovered by relying on other intact copies. Curtmola
et al. [11] proposed the first multiple replicas auditing scheme
based on RSA signature. In their scheme, multiple copies of
a file are generated by masking the encrypted file blocks with
multiple random values so that different copies are distinguished
and data privacy is protected. To support public verifiability,
Barsoum et al. [12] presented two schemes for detecting the
integrity of multiple copies, including the deterministic scheme
and a probabilistic scheme. The latter is more practical and
economical because a sensible method is to select some chal-
lenge blocks instead of all data blocks. To reduce the burden of
certificate management, Li et al. [13] proposed a multi-copy
auditing scheme by employing identity-based cryptography in
multi-cloud storage.

In summary, most existing schemes are based on trusted TPA.
This centralized third-party auditor will face some centralization
problems such as single point of failure and performance bottle-
necks. Besides, it is impossible to ignore the strong trust issue
of TPA [14].

To solve the problems caused by centralization, the paradigm
of decentralized storage based on blockchain is proposed. Ver-
ifying data integrity in decentralized storage networks has also
become a new challenge and many auditing schemes have been
proposed. Zhang et al. [15] proposed a blockchain-based au-
diting scheme. Untrusted TPAs need to publish audit logs on
the blockchain. To solve the certificate management problem
brought by public key infrastructure (PKI), Xue et al. [16] pro-
posed an identity-based public auditing scheme. Their scheme
also publishes audit logs on the blockchain, further unbiased,
unpredictable, and unforgeable challenge set is generated by
employing the nounce in the block header. Furthermore, a large
amount of duplicate data in decentralized storage will lead to
a waste of storage space. Xu et al. [5] proposed a blockchain-
enabled deduplicatable data auditing mechanism. They build an
index table in the blockchain that stores the hashes of the files.
If the file uploader finds the same file hash value in the index
table, the storage provider needs to receive the data ownership
proof from the uploader and build a new file index table. Yuan
et al. [17], Tian et al. [14] and Zhang et al. [18] also proposed
blockchain-based secure deduplication auditing schemes which
make use of convergent encryption to achieve block-level dedu-
plication. Furthermore, Xu et al. [19] and Zhang et al. [20] im-
plemented dispute arbitration and locate faults similarly utilizing
smart contract. Du et al. [21] proposed an efficient auditing
scheme by employing polynomial commitment. In the above
three works, smart contract acts as a more trustworthy auditor to
replace untrusted TPA in decentralized storage. In short, most
existing schemes store the metadata during the audit process on
the blockchain for public verification. As the number of audited
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files increases, both the verification times and the total size of
proof on the blockchain will grow linearly. And it would place
a heavy burden on the blockchain network.

III. PRELIMINARY AND DEFINITIONS

A. Preliminary

1) Bilinear Maps: Let G1 and G2 be two multiplicative
cyclic groups of order q. Let g be the generator of G1. e :
G1 ×G1 → G2 is a bilinear map with following properties:
� Bilinear: ∀g, h ∈ G1 and a, b ∈ Zp, e(g

a, hb) = e(g, h)ab

holds.
� Non-degeneracy: ∀g ∈ G1, e(g, g) �= 1, where 1 is the

identity element.
� Computability: ∀g, h ∈ G1, there exists a effective algo-

rithm to calculate e(g, h).
2) Polynomial Commitment: Polynomial commitment

scheme (PCS) is a cryptographic commitment scheme,
first proposed by Kate et al. (KZG) [22]. Subsequently,
Gabizon et al. proposed a batched version of the KZG scheme
(PCS-PLONK) [23] that can verify an identical point for
multiple polynomials. But the proof size and prover computation
will grow linearly with the number of distinct points. To solve
this problem, Boneh et al. proposed an efficient polynomial
commitment scheme for multiple points and polynomials
(PCS-MPAP) [24].

In brief, the PCS can be simplified as a two-party protocol with
four phases: Setup, Commit, CreateWitness and VerifyEval.
Among them, the CreateWitness phase and VerifyEval phase of
these schemes are different. So we only give a brief description
of these two phases.
� Setup(λ)→ (pk, sk): Generate an appropriate algebraic

structure and a public-secret key pair. It should be noted
that the public key is pk := (g, gα, . . . , gα

s−1
), where g is

a generator of group G and α ∈ Zp is randomly chosen as
the secret key.

� Commit(pk, f(X))→ C: The prover makes a commit-
ment for a polynomial f(X) with coefficient vector
(c0, c2, . . ., cs−1). By using pk, prover outputs the com-
mitment C = gf(α).

� CreateWitness(pk, f(X), r)→W : Given the pk and the
polynomial f(X), the prover calculates the witness W on
a random point r.

� VerifyEval(pk, r, C,W )→ 0/1: After receiving (C,W )
from the prover, the verifier can check whether f(r) is
the evaluation of the polynomial f(X) at point r.

3) Blockchain and Smart Contract: Blockchain technology
is well known in the field of cryptocurrencies such as Bitcoin [7],
Ethereum [8], and Filecoin [9]. Blockchain is essentially a
shared, immutable, decentralized, and distributed ledger, which
generally contains digital transactions, data records, and exe-
cutables [25]. Many transactions are aggregated together to form
blocks. After merging some block header data, the blocks are
linked together by hashing to form a chronologically ordered
chain of records. The consensus mechanism enables all nodes
to agree on the content of the blockchain.

Fig. 1. System model of our scheme.

The Smart contract is a computer program or a transaction
protocol that runs on the blockchain. It allows trusted transac-
tions without third parties and is irreversible and immutable. To
meet more application scenarios, Ethereum is the first platform
to introduce the concept of smart contracts. Smart contract using
Turing-complete programming languages brings more possibil-
ities to the future of blockchain technology.

B. System Model

As depicted in Fig. 1, the system model of our proposed
scheme has three entities: storage service provider, user, and
blockchain. Their definitions are as follows:
� Storage service provider (SSP): SSP has a lot of storage

resources and provides data outsourcing services for users.
It also has the certain computing power to deal with data
integrity auditing. SSP can be an individual or a cloud
service provider.

� User: The user outsources local data to SSPs. He encrypts
the original data into multiple different copies and stores
the copies on different SSPs. After that, local data can be
deleted to save storage space.

� Blockchain: The blockchain network is mainly composed
of user nodes and miner nodes. Miner nodes can earn
rewards by executing contracts or renting out storage re-
sources. The smart contract is responsible for interacting
with the SSPs and completing the integrity verification.
The metadata of the audit process will be recorded on the
blockchain to form an audit log.

� System manager: System manager is responsible for ini-
tializing some system parameters.

C. Security Model

Inspired by the POR security model [4], we define a security
model for the proposed scheme, which contains four algorithms
(KeyGen, Setup, Prove, Verify).
� KeyGen(λ)→ (pk, sk): Given the security parameter λ,

the algorithm KeyGen generates the public key and private
key pk, sk.
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� Setup(F, sk, pk)→ (F̂ , σ): Given a file F and the keypair
(pk, sk), the Setup algorithm produces the preprocessed
file F̂ and its corresponding tag σ.

� Prove(F̂ , σ, pk, Chal)→ Proof : Given the file F̂ , tag σ,
public key pk and a random challenge Chal, the Prove
algorithm outputs a proof Proof .

� Verify(pk, Proof)→ 0/1: Given the Proof and pk, the
Verify algorithm will output 0/1 representing reject and
accept, respectively.

In this work, we would like the proposed scheme S = (Key-
Gen, Setup, Prove, Verify) to be correctness and soundness.
Correctness requires that, for all (sk, pk), F , F̂ and σ, the Verify
algorithm accepts the validProof . For soundness, we define the
security game of the proposed scheme as below.
� The challenger C runs the KeyGen algorithm to generate

the keypair (pk, sk) and sends the pk to adversary A.
� Given a file F chosen by A, C runs the Setup algorithm

to get the preprocessed file F̂ and its corresponding tag σ.
Then, C sends (F̂ , σ) to A.

� C chooses a random challenge Chal that the challenge
blocks have not been queried and sends Chal to A.
Then, A generate a proof by an arbitrary algorithm
Art(F̂ , σ, Chal)→ Proof .

� A wins the game if the Proof generated by A can make
C output 1 through the Verify algorithm.

Definition 3.1: The proposed scheme S is soundness if any
probabilistic polynomial-time adversary A can win the above
game with a non-negligible probability.

D. Algebraic Group Model

Fuchsbauer et al. [26] first proposed the algebraic group model
(AGM) and proved the security of the BLS signature scheme [27]
and Groth’s zk-SNARK [28] in it. The AGM lies between the
standard model and the Generic Group Model (GGM), and it
is a restricted model of computation that covers group-specific
attacks while allowing a meaningful security analysis. Besides,
in their study, some variants of the standard Diffie-Hellman
assumption (such as computational Diffie-Hellman and strong
Diffie-Hellman) are actually equivalent to the Discrete Loga-
rithm (DLOG) assumption in the AGM. Therefore the proof is
simpler in the AGM than in the GGM. Subsequently, AGM was
used to prove the security of PCS in zk-SNARK such as [23],
[24], [29].

We call an an algorithmAalg algebraic if whenever it outputs
a group element Z ∈ G, it also outputs a representation �z =
(z1, . . ., zt) such thatZ =

∏t
i=1 L

zi
i where �L = (L1, . . ., Lt) is

the list of all group elements given to Aalg during its execution
so far.

By the security argument in [23], [24], we have the following
theorem.

Theorem 1: PC-PLONK is knowledge soundness in the AGM
assuming the q-discrete logarithm (Q-DLOG) assumption holds.

Theorem 2: PC-MPAP is knowledge soundness in the AGM
assuming the Q-DLOG assumption holds.

TABLE I
NOTATIONS AND DESCRIPTIONS IN BASIC SCHEME

IV. THE PROPOSED SCHEME

A. Overview

To clearly describe the proposed scheme, we assume a simpli-
fied storage scenario. An SSP stores only one copy and its tags
and specific details will be shown in Section IV-B2. We empha-
size that it can also be extended to real-world scenarios. We first
propose a basic scheme. During the preprocessing and storage
phase, the user generates different copies and corresponding tags
for file F . However, PCS-PLONK used in the basic scheme will
bring disadvantages to batch files audit tasks. During the auditing
phase, the on-chain and off-chain overhead will grow linearly
with the number of files. Therefore, we propose an efficient
batch auditing scheme as an improvement. We use PCS-MPAP to
improve the efficiency in the scenario of batch auditing multiple
files. It should be noted that the second scheme can also be used
for auditing scenarios of a single file. But when the number of
files is 1, the basic scheme is more efficient. When the number
of files is not less than 2, the efficiency of the second scheme
has obvious advantages.

We would also like to emphasize that the two proposed
schemes differ only in the auditing phase. They have the same
setup phase and preprocessing and storage phase. In other words,
SSP only needs to honestly store copies and corresponding
tags to pass the integrity auditing of both schemes. To avoid
repetition, we only describe the auditing phase in our second
scheme.

B. Basic Scheme

1) Setup Phase: During the Setup phase, the system man-
ager generates some system parameters. And some important
notations need to be described as shown in Table I.
Setup(1λ)→ Para. Based on security parameter λ, first,

system manager selects two multiplicative cyclic groups G1

and G2 with order p. Second, G1 and G2 construct a bilin-
ear map e : G1 ×G1 → G2 and g is a generator of G1. Be-
sides, two cryptographic hash functions H : {0, 1}∗ → G1 and
H ′ : G1 → Zp are selected. Finally, system parameter Para =
(G1,G2, g, e,H,H

′) will be published by the system manager
on the blockchain.

2) Preprocessing and Storage Phase: During the preprocess-
ing and storage phase, the user divides file F into n blocks
and each block is further divided into s sectors. The file F can
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be defined as F = {bjk}1�j�n,1�k�s. After this, the user will
generate copies of the file F and the corresponding tags. We
describe the detailed steps as follows:
KeyGen(λ)→ (pk, sk). The user generates the public key

pk := (v = gx, u = gαx, g, gα, gα
2
. . . , gα

s−1
) and the secret

key sk := (x, α) where x, α ∈ Z∗p are two random numbers.
RepGen(F )→ Copyi. In decentralized storage, SSPs are

highly likely to collude with each other. If the copies of file
F are the same, they can share a copy to deceive the user. So we
generate different copies of fileF by using symmetric encryption
techniques such as AES. The diffusion properties of AES can
help the user generate the unpredictable ciphertext. We define
the ith copy of file F as Copyi = {mijk}1�i�N,1�j�n,1�k�s.
And mijk ∈ Zp is calculated by mijk = EK(bjk‖i).
TagGen(sk, fmij

(X), Fid)→ σij . By using sk, the user
calculates tags for each data block as follows:

σij =
(
H (Fid‖i‖j) · gfmij

(α)
)x

. (1)

We define σij as the tag of the jth block of the ith copy.
The symbol Fid ∈ Zp is the identity of the File F . And fmij

is defined as a polynomial with s coefficients {mijk}1�k�s,
i.e., fmij

(X) =
∑s

k=1mijk ·Xk−1. Then, the user uploads
(Fi, {σij}) to SSPi, where SSPi is defined as the ith SSP.
TagV erfication(pk,mijk, Fid, σij)→ 0/1. To detect

whether the user is honest in generating tags, SSPs will use pk
to verify each tag by the following equation:

e (σij , g) = e
(
H (Fid‖i‖j) · gfmij

(α), v
)
. (2)

If all tags are verified successfully, the user and SSPs will agree to
the store contract. Otherwise, SSPs will refuse the store contract.

3) Auditing Phase: During the auditing phase, the smart
contract verifies the integrity of the original file’s all copies.
We describe this phase in detail as three steps.
ChalGen(Para, nounce)→ chal. To ensure the random-

ness of the challenge, the nonce of the latest block is se-
lected by smart contract as the random seed. In each audit,
the smart contract generates a random c-elements challenge set
Q = {(aj , vj)} and picks two random numbers r, γ ∈ Zp by
using pseudo-random functions. It should be noted that c is the
number of challenge blocks, and aj ∈ [1, n] and vj ∈ Zp are the
indexes and coefficients of challenge blocks, respectively. After
that, the smart contract sends chal = (Q, r, γ) to each SSP and
publishes chal on the blockchain.
ProofGen(chal, {fmij

(X)}, pk)→ Proofi. After receiv-
ing the chal, SSPi calculates the respective proofs as follows:
SSPi aggregates the tags of all challenge blocks and σi is
calculated by (3).

σi =

⎛
⎝ c∏

j=1

σ
vj

iaj

⎞
⎠

γi−1

. (3)

Based on the challenge set Q, SSPi computes the challenge
polynomial fMi

(X) =
∑c

j=1 vj · fmiaj
(X) and quotient poly-

nomial hi(X) = γi−1 · fMi
(X)−fMi

(r)

X−r . And wi is calculated

TABLE II
SUPPLEMENTARY NOTATIONS AND DESCRIPTIONS IN EFFICIENT BATCH

AUDITING SCHEME

by (4).

wi = ghi(α). (4)

To prevent the on-chain transparent proof from leaking some
data blocks, SSPi selects a random number εi ∈ Zp and calcu-
lates si with random masking [30] by (5).⎧⎨

⎩
s′i = γi−1 · fMi

(r)
Ri = vεi = (gx)εi

si = s′i + εi ·H ′ (Ri)
. (5)

Finally, SSPi publishes Proofi = (σi, wi, si, Ri) on the
blockchain.
V erify(pk, {Proof i}, chal)→ result. Upon receiving

Proofi from the blockchain, the smart contract aggregates them
by (6). ⎧⎨

⎩
σ =

∏N
i=1 σi

w =
∏N

i=1 wi

s =
∑N

i=1 si

. (6)

Then smart contract verifies the integrity of all copies by (7),
where η =

∏N
i=1R

H ′(Ri)
i and P =

∏N
i=1(

∏c
j=1H(Fid||i||

j)vj )γ
i−1

.

e (σ · η, g) · e (g−s, v) = e(P, v) · e (w, u · v−r) . (7)

The smart contract will publish the result to the blockchain to
form an audit log (chal, {Proof i}, result). If the (7) holds,
output result = 1 to indicate acceptance; otherwise output
result = 0 to indicate rejection and the smart contract will
verify the proof of each SSP by the (8), where ηi = R

H ′(Ri)
i

and Pi = (
∏c

j=1H(Fid||i||j)vj )γ
i−1

. The SSPs which fail to
pass the verification will be penalized and bear the cost of this
round of auditing.

e (σi · ηi, g) · e
(
g−si , v

)
= e (Pi, v) · e

(
wi, u · v−r

)
. (8)

C. Efficient Batch Auditing Scheme

To improve the efficiency of processing batch audit tasks, we
can adopt this scheme during the auditing phase. And some sup-
plementary important notations need to be described as shown
in Table II.

We assume that the integrity of all copies of d files is verified
simultaneously and the symbol l stands for the lth file where
1 � l � d. The specific details of the batch auditing phase are
as follows:
ChalGen(Para, nounce)→ chal. The challenge is gener-

ated in the same way as in the basic scheme. In each audit
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period, the smart contract sends random challenges chal =
({Ql}, {rl}, γ, z) of all files to each SSP. Ql and rl denote the
random challenge set and random evaluation point of the lth file,
respectively. γ, z ∈ Zp are two random numbers.
ProofGen(chal, {fl,mij

(X)}, pk)→ Proofi. Based on
chal, SSPi calculates the respective proofs in the following
steps. SSPi aggregates the tags of all challenge blocks and σ′i is
calculated by (9).

σ′i =
d∏

l=1

⎛
⎝ ∏
{aj ,vj}∈Ql

σ
vj

l,iaj

⎞
⎠

βl

. (9)

According to the input of the ProofGen algorithm, SSPi com-
putes the challenge polynomial Fl,Mi

(X) =
∑
{aj ,vj}∈Ql

vj ·
fl,miaj

(X)and the valueSl,i = Fl,Mi
(rl) at its evaluation point.

It should be noted that fl,mij
(X) is represented as the polyno-

mial of the jth block of the ith copy of the lth file. Furthermore,
fix the set T = {r1, . . . , rd}, the set Sl = {rl} and the polyno-
mialZS :=

∏
z∈S(X − z), some polynomials are calculated by

(10) where βl = γl−1 · ZT \Sl
(z).⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Fi(X) =
∑d

l=1 γ
l−1 · ZT \Sl

(X)
· (Fl,Mi

(X)− Fl,Mi
(rl))

Hi(X) = Fi(X)
ZT (X)

Li(X) =
∑d

l=1 βl · (Fl,Mi
(X)− Fl,Mi

(rl))
−ZT (z) ·Hi(X)

. (10)

After obtaining the above polynomials, the proof value
Wi,W

′
i , Ei is calculated by (11). (Note that Li(z) = 0. Thus

(X − z) divides Li(X) and W ′
i can be calculated by the coeffi-

cient of Li(X)
X−z and pk without secret key α.)⎧⎪⎨

⎪⎩
Wi = gHi(α)

W ′
i = g

Li(α)

α−z

Ei =
∑d

l=1 βl · Sl,i

. (11)

Finally, SSPi publishes Proofi = (σ′i,Wi,W
′
i , Ei) on the

blockchain.
V erify(pk, {Proof i}, chal)→ result. Upon receiving

Proofi from the blockchain, the smart contract aggregates them
by (12). ⎧⎪⎪⎨

⎪⎪⎩
W =

∏N
i=1Wi

W ′ =
∏N

i=1W
′
i

E =
∑N

i=1Ei

σ′ =
∏N

i=1 σ
′
i

. (12)

Then smart contract verifies the integrity of all copies
of d files by (13), where ψ = g−E ·W−ZT (z) and ζ =∏N

i=1

∏d
l=1(

∏
{vj}∈Ql

H(Fid‖i‖j)vj )βl .

e (σ′, g) · e(ψ, v) = e(ζ, v) · e (W ′, u · v−z) . (13)

The smart contract will publish the result to the blockchain
to form an audit log (chal, {Proof i}, result). If the (13)
holds, output result = 1 to indicate acceptance; otherwise out-
put result = 0 to indicate rejection and the smart contract
will verify the proof of each SSP by the (14), where ψi =

g−Ei ·W−ZT (z)
i and ζi =

∏d
l=1(

∏
{vj}∈Ql

H(Fid‖i‖j)vj )βl .
The SSPs which fail to pass the verification will be penalized
and bear the cost of this round of auditing.

e (σ′i, g) · e(ψi, v) = e(ζi, v) · e
(
W ′

i , u · v−z
)
. (14)

V. SECURITY ANALYSIS

In this section, we analyze the security of our scheme accord-
ing to the following theorems.

A. Correctness

The analysis in this part is that the verification stage will
always pass if the proof is correctly computed.

Theorem 3: If the users, the SSPs, and the smart contract are
honest in obeying the auditing process of our scheme, then the
proof generated by the SSPs can pass the verification.

Proof: Equation (7) is equivalent to the product of (8) from
1 to N and the relationship between (13) and (14) is the same.
Thus, we only prove the correctness of (8) and (14).

The correctness of the (8) is derived as follows:

e(σi · ηi, g) · e
(
g−si , v

)
= e

(
σi ·RH ′(Ri)

i , g
)
· e (g−si , v)

= e (σi, g) · e
(
gεi·H

′(Ri), gx
)
· e (g−si , v)

= e (Pi, v) · e
(
gγ

i−1·fMi
(α), v

)
· e

(
g−s

′
i , v

)

= e (Pi, v) · e
(
gγ

i−1· fMi
(α)−fMi

(r)

α−r , vα−r
)

= e (Pi, v) · e
(
ghi(α), gx·(α−r)

)
= e (Pi, v) · e

(
wi, u · v−r

)
.

The correctness of the (14) is derived as follows:

e (σ′i, g) · e(ψi, v)

= e

⎛
⎝ζi · g

d∑

l=1

βlFl,Mi
(α)
, gx

⎞
⎠ · e(g−Ei ·W−ZT (z)

i , v)

= e (ζi, v) · e(g
d∑

l=1

βl·(Fl,Mi
(α)−Fl,Mi

(rl))−ZT (z)·Hi(α)
, v)

= e (ζi, v) · e(gLi(α), v)

= e (ζi, v) · e(g
Li(α)

α−z , vα−z)

= e (ζi, v) · e(W ′
i , g

x·(α−z))

= e(ζi, v) · e
(
W ′

i , u · v−z
)
.

B. Soundness

The analysis in this part includes three theorems. Theorem 4
proves the property of polynomial binding. Theorems 5 and 6
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prove that a single tag is unforgeable and the proposed scheme
is soundness, respectively.

Theorem 4: If a probabilistic polynomial time adversary A
can find a polynomial fm′(X) to forge gfm(α) (i.e., gfm′ (α) =
gfm(α) and fm′(X) �= fm(X)), we can construct an algorithm
B that uses A to solve the t-SDH problem.

Proof: Suppose there exists a probabilistic polynomial time
adversary A that can find a polynomial fm′(X) such that
gfm′ (α) = gfm(α), where fm(X) and fm′(X) are known toA.A
can construct another polynomial fm′′(X) = fm(X)− fm′(X)

and obtain gf
m′′ (α) = gfm(α)−fm′ (α) ∈ G1. Since fm′(α) =

fm(α) and fm′′(α) = 0, i.e., α is a root of polynomial fm2
(X).

By factoring fm′′(X), B can easily find SK = α and solve the
t-SDH problem.

Theorem 5: In the random oracle model, if the CDH problem
is hard, the tag in our proposed scheme is existentially unforge-
able under the selection message attack.

Proof: Suppose that there is a PPT adversary A who can
successfully forge the tag. Then we can construct a simulator S
to solve the CDH problem. Given the CDH instance (g, ga, gb),
S outputs gab as the solution of CDH problem by running the
random oracle and A. S works as follows.
� Setup: S generates the system parameter and controlsH as

the random oracle. Then S sets ga and (g, gα, . . . , gα
s−1

)
as the public key, where the secret key x is equivalent to a.

� Query: In this step, A makes queries by submitting
(Fid, i, j, fmij

(X)) to S . Before receiving queries, S ran-
domly chooses an integer k∗ ∈ [1, q], where q denotes the
number of queries to the random oracle. Then S keeps a

query list and responses toAwith gw ∈ G, wherew
R← Zp

is randomly chosen by S . It also responds to queries of
the form H(Fid‖i‖j) as follows. For each i and j, S
chooses a random value wk

R← Zp, where 1 ≤ k ≤ N ∗ n
and programs the random oracle as

H (Fid‖i‖j) =
{
gb+wk/gfmij

(α) k = k∗

gwk/gfmij
(α) otherwise

.

Now S can computes the valid tag σij (i.e., σk) as

σk =
(
H (Fid‖i‖j) · gfmij

(α)
)a

=
(
gwk/gfmij

(α) · gfmij
(α)

)a

= (ga)wk .

For a query on (Fid, i, j, fmij
(X)), if it is the k∗th query

in the query list, abort.
� Forgery: A forges a tag σij∗ that has not been queried. If

the query of this tag is not the k∗th query, abort. Otherwise,
we can get σij∗ as

σij∗ = σk∗ =
(
gb+wk∗

)a
= gab+awk∗ .

Analysis. Based on the above, S can get the solution
σk∗/(g

a)wk∗ = gab+awk∗/gawk∗ = gab for the CDH instance.

SupposeA can forge the tag with (t, q, ε). S will therefore solve
the CDH problem with (t+O(q), ε/q).

Theorem 6: If the signature scheme used for tags is unforge-
able under the CDH problem and the polynomial commitment
scheme is knowledge soundness by the q-DLOG assumption,
the Proof is unforgeable in our proposed scheme.

Proof: Here, we analyze the second scheme and prove the
theorem (i.e., Proofi = (σ′i,Wi,W

′
i , Ei) is unforgeable) in a

series of games. To avoid repetition, we do not provide the
proof process for the first scheme, which is similar to the second
scheme.

Game 0. Game 0 is the challenge game defined in Section
III-C.

Game 1. Game 1 is the same as Game 0, with one difference
that the challenger C keeps a list of all tags ever issued. If the
adversaryA submits a tag that is not in the list, C declares failure
and aborts.

Game 2. Game 2 is the same as Game 1, with one difference
that C maintains a list of its responses to tag query made by
A. Then, C observes each instance of Verify algorithm. If A is
successful (i.e., Verify algorithm outputs 1) but his aggregate σ′i
is not equal to

∏d
l=1(

∏
{aj ,vj}∈Ql

σ
vj

l,iaj
)βl , C declares failure

and aborts.
To further analyze the difference in success probabilities

between Game 1 and Game 2, we will establish some notation.
We suppose that the file causing the abort is composed of
the coefficient of fmij

(X), and its corresponding tag issued
by A is {σij}. Then, assume {Ql} is the query that causes

the abort and A’s response to this query is (σ̂′i, Ŵi, Ŵi
′
, Êi).

Let the expected response obtained from an honest prover
be (σ′i,Wi,W

′
i , Ei), where σ′i =

∏d
l=1(

∏
{aj ,vj}∈Ql

σ
vj

l,iaj
)βl ,

Wi = gHi(α), W ′
i = g

Li(α)

α−z and Ei =
∑d

l=1 βl · Sl,i. By the
correctness of the proposed scheme, the expected response will
satisfy the (15), (16), and (17). Note that (15) is multiplied by
(16) and (17), where the correctness of (16) is obvious and the
correctness of (17) has been proved in [24].

e (σ′i, g) · e
(
g−Ei ·W−ZT (z)

i , v
)
= e(ζi, v) · e

(
W ′

i , u · v−z
)

(15)

e (σ′i, g) = e

⎛
⎝ζi · g

d∑

l=1

βlFl,Mi
(α)
, v

⎞
⎠ (16)

e(g

d∑

l=1

βlFl,Mi
(α) · g−Ei ·W−ZT (z)

i ) = e
(
W ′

i , u · v−z
)
. (17)

Because C aborts, we know that σ′i �= σ̂′i and σ̂′i can pass the
(16). Thus we can obtain the (18).

e
(
σ̂′i, g

)
= e

⎛
⎝ζi · g

d∑

l=1

βlFl,Mi
(α)
, v

⎞
⎠ . (18)

Now we will show that we can construct a simulator S to solve
the CDH problem if A casues C in Game 2 to abort with non-
negligible probability. By challenging a single block of a single
file withQ1 = (a1, v1), S can easily forge a single tag as σia1

=
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TABLE III
FUNCTION COMPARISONS OF AUDITING SCHEMES

σ̂′i
1/v1β1

. According to Theorem 5, a single tag cannot be forged.
Therefore,S can embed this forged tag into the proof of Theorem
5 to solve the CDH problem.

Game 3. Game 3 is the same as Game 2, with one difference
that C tracks store queries and observes each instance. If A
is successful in any of these instances but at least one of the

(Ŵi, Ŵi
′
, Êi) is not equal to the expected gHi(α), g

Li(α)

α−z and∑d
l=1 βl · Sl,i. respectively, C declares failure and aborts.
By the previous notion in Game 2, we can construct a simu-

lator S to break the knowledge soundness of PCS-MPAP if A
causes C to abort with non-negligible in Game 3.
S interacts with A until the condition specified in the

case of Game 3 occurs: A passes the Verify algorithm with
(Ŵi, Ŵi

′
, Êi) that is different from the expected response

(Wi,W
′
i , Ei). S takes the (Ŵi, Ŵi

′
, Êi) as input to pass the (17)

which is the same as the verification equation of PCS-MPAP.
Therefore, if there is a nonnegligible difference between the

adversary’s probabilities of success in Game 2 and Game 3, we
can construct a simulator S that uses A to break the knowl-
edge soundness of PCS-MPAP and further break the q-DLOG
assumption.

VI. PERFORMANCE

In this section, we compare the latest work [13], [21]. As far
as we know, in the cloud storage, [13] is an efficient multi-copy
auditing proposal designed with ID-based cryptography. [21]
is quite an advanced auditing scheme in decentralized storage.
Their specific function comparison is shown in Table III. There-
fore, we choose the above three schemes as comparisons to
highlight the advantages of our work from different perspectives.

A. Theoretical Analysis

We analyze the computation overhead and on-chain storage
overhead of the compared schemes. We give some definitions
in Table IV for analysis. Furthermore, we omit some operations
such as hashing, addition, and multiplication on Zp because
of their low and negligible overhead. We assume that a file is
encrypted with N copies. Each copy is stored separately on N
SSPs. Each copy has n blocks and each block has s sectors.
Besides, we assume that the number of files to be audited
in a batch is d and the number of challenge blocks is c for
each file. Then, we summarize the comparisons of computation
overhead and on-chain storage overhead in Tables V, VI and VII,
respectively. One point we want to make is that since multiple
SSPs can execute the protocol in parallel, we only consider the
computation overhead of a single SSP in the TagGen phase and
ProofGen phase.

TABLE IV
NOTATIONS AND DESCRIPTIONS IN PERFORMANCE

TABLE V
COMPARISONS OF COMPUTATION COSTS DURING THE PREPROCESSING AND

STORAGE PHASE

The three schemes all adopt the method of dividing a data
block into sectors, so the difference between their computation
costs is very small, as shown in Table V. The advantage of this
method is that it can efficiently improve computing efficiency
during the preprocessing and storage phase.

In the distributed multi-copies scenario, we also compared
the overhead of the auditing phase. As shown in Table VI,
when auditing a single file, scheme [13] is more efficient than
scheme [21] and our scheme when generating proofs. During
auditing verification, both our scheme and scheme [13] can
process multiple copies distributed on different SSPs at one time,
while scheme [21] can only verify one copy. However, limited by
the large proof size, the auditing protocol of scheme [13] is not
suitable for decentralized storage. In the following comparative
analysis, we will further explain the reasons. When the scenario
is extended to batch audit tasks with multiple files, the computa-
tion overhead of scheme [13] and scheme [21] will grow linearly
with the number of files, as shown in Table VII. And our scheme
can solve the drawbacks in this scenario.

In the preprocessing and storage phase, all three schemes
upload the calculated n tags with a file copy to the SSP.
Their communication overhead is the same and the size is
n|G1|+ |Copy|. While in the audit phase, on-chain storage
overhead is equal to communication overhead. So we no longer
analyze communication overhead. As shown in Table VIII, we
assume that the auditing protocol of scheme [13] is used in
decentralized storage and compare it with its on-chain storage
overhead. Obviously, the overhead of scheme [13] will be a huge
burden due to the setting of the number of sectors s. And with
the help of the polynomial commitment technique scheme [21]
and our scheme, the proof size is constant. When batch verifying
multiple files, our scheme can still maintain a constant overhead
of size 3|G1|+ |Zp|.
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TABLE VI
COMPARISONS OF COMPUTATION COSTS DURING THE AUDITING PHASE FOR SINGLE FILE

TABLE VII
COMPARISONS OF COMPUTATION COSTS DURING THE AUDITING PHASE FOR MULTIPLE FILES

Fig. 2. Comparisons of off-chain computation overhead.

TABLE VIII
COMPARISONS OF STORAGE OVERHEAD ON-CHAIN FOR EACH SSP DURING

THE PROOFGEN PHASE

B. Implementation

To evaluate the performance of the schemes, we conducted
a series of experiments to test the on-chain and off-chain
overheads of all comparative schemes. We choose to use the
curve BN256 supported by the Ethereum precompiled contract
for comparative experiments. For on-chain testing, we use the
Ganache1 to simulate the Ethereum blockchain environment in
the Alibaba Cloud Server ECS s6. And the solidity language
is used to implement smart contract. For off-chain testing, we
use golang language to call cloudflare cryptographic library2 to
implement cryptographic operations on curve BN256 (|Zp| =
|G1| = 32 bytes, |GT | = 64 bytes, |GT | = 192 bytes). Further-
more, as we described in the introduction, the decentralized stor-
age model makes better use of personal idle storage resources.
Thus, we set up the SSP’s test environment on the machines with
Intel(R) Core(TM) i5-10500 CPU 3.10 GHz 12.0 GB RAM,
Linux and set up the user’s test environment on a computer with
Intel(R) Core(TM) i5-12400F CPU 2.50 GHz 8.0 GB RAM,
Windows. To facilitate testing, the size of each file copy used

for the experiment is 320 KB. And it is divided into 10,000 data
chunks of size 32B. Notably, all experiments are executed 100
times to obtain an average result.

1) Off-Chain Part Costs: For a clearer exposition, we further
analyze the off-chain overhead at each stage. And we fixed the
number c of challenge blocks to 10 during a test round of auditing
to achieve a fair comparison.

As shown in Fig. 2, the computational overhead of each stage
will be affected due to the different settings of the number of
sectors s. As the number of sectors s increases, the number
of tags that need to be calculated will decrease. Therefore,
the computational cost in stage TagGen and TagVerfication is
also reduced accordingly. Because of the same tag construction,
scheme [21] and our scheme have a similar cost. Correspond-
ingly, in the ProofGen stage, scheme [21] and our scheme require
more polynomial operations. Scheme [13] also needs to calcu-
late more proof. In short, dividing the data block into sectors
can indeed alleviate the computation overhead at the cost of
proof generation time and pre-preparing elements of size s|G1|
({uk}1≤k≤s in scheme [13], {gαj−1}1≤j≤s in scheme [21] and
ours). Thus, the number of sectors needs a reasonable setting.

Next, we will explain why scheme [13] is not suitable for
auditing in decentralized storage. According to the Ethereum
yellow paper [8], it takes 20,000 units of gas to store a 32-byte

1https://trufflesuite.com/ganache/
2https://github.com/cloudflare/bn256
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Fig. 3. Comparisons of the proof size for single file.

Fig. 4. Comparisons of the proof size for multiple files.

word on the Ethereum blockchain. So the proof size is criti-
cal to an auditing scheme in decentralized storage. Although
scheme [13] has high efficiency in cloud storage. Malicious
attackers have the opportunity to obtain partial data of users,
due to the proof of linear combination of data blocks on the
transparent blockchain. Most importantly if it is used directly in
a decentralized paradigm, storing huge proof on the blockchain
would bring catastrophic on-chain overhead, as shown in Fig. 3.
In contrast, scheme [21] and our scheme only generate proof
of constant size of 288-byte and 128-byte for each SSP, re-
spectively. Thus, scheme [13] is not suitable for auditing in
decentralized storage and we will not discuss scheme [13] in
the following comparison.

We set s to 50 to compare the overhead under batch auditing.
In the scenario of auditing multiple files at once, PCS-MPAP
can open multiple polynomials at distinct points. As shown in
Figs. 4 and 5, the overhead of scheme [21] will increase linearly
with the number of files. In contrast, our scheme still guarantees
constant proof size for each SSP and has lower computation
overhead in the face of a large number of files. Consequently,
our batch auditing scheme is more efficient than scheme [21],
both in terms of computation overhead and proof size.

2) On-Chain Part Costs: We evaluate the on-chain overhead
of the scheme based on the Ethereum platform. Gas in Ethereum

Fig. 5. Comparisons of the single SSP’s computation overhead in ProofGen
stage for multiple files.

Fig. 6. Comparisons of the single SSP’s on-chain storage overhead in Proof-
Gen stage for multiple files.

is the unit for measuring the computational effort required to
execute a contract. In brief, the more complex operations to
be performed and the more data stored on the blockchain,
the more gas costs will be required. Although one challenge
we encounter here is the high cost of implementing complex
cryptographic primitives on the blockchain due to the limitations
of the solidity language. We still use the gas costs as the standard
to measure the on-chain resource consumption of each scheme.
Our intention is only for a convenient and fair comparison. It
should be emphasized that our scheme can be applied to any
blockchain platform.

With the number of files increasing, the proof size of
scheme [21] to be stored on the blockchain will grow linearly.
What is shown in Fig. 6 is consistent with the conclusion of
the theoretical analysis. Storing the elements of 3|G1|+ |Zp|
on the blockchain requires 202,905 units of gas. And storing
the elements of 2|G1|+ |GT |+ |Zp| on the blockchain requires
457,633 units of gas. Obviously, our scheme can maintain a
constant gas cost during batch auditing to save a lot of on-chain
storage resources.

In the verification stage, we assume that 10 copies of each file
are generated and distributed to different SSPs (i.e., N = 10).
As shown in Fig. 7, when the number of files is 1, our scheme
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Fig. 7. Comparisons of the on-chain computation overhead in Verify stage for
multiple files.

consumes 5,685,545 units of gas to verify its 10 copies at a
time. As the number of files increases by 2, that is, the number
of verified copies increases by 20, our scheme only needs to
consume about 5,000,000 units of gas to perform additional hash
operations. But, scheme [21] can only verify a single copy at a
time and consume 3,269,246 units of gas for a copy. It will
require a lot of on-chain computing resources when there are a
lot of audit requests.

In summary, all the experimental results satisfy the previous
theoretical analysis. And our scheme achieves the expected
purpose.

VII. CONCLUSION

In this study, we proposed an efficient data integrity audit-
ing scheme for multi-copy in decentralized storage. We first
proposed a basic scheme for auditing all distributed file copies
simultaneously. Specifically, there was potential to apply poly-
nomial commitment techniques to integrity auditing in the
decentralized paradigm. In addition, we further proposed an
efficient batch auditing scheme considering a large number of
audit requests. It reduced computation overhead while keeping
the proof size constant. This will save a lot of on-chain and off-
chain resources. Theoretical analysis and experimental results
confirmed that our scheme is efficient and suitable for decen-
tralized scenarios. In future work, we aim to further improve
the scheme to alleviate the computation overhead of on-chain
verification.
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