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Abstract—Massive nodes in a blockchain form an off-chain dis-
tributed storage network to provide storage resources for users
to meet large data upload requirements. However, this storage
approach introduces security and performance issues. Firstly, it
is difficult to guarantee the integrity of the data uploaded, and
these data may be easily corrupted or lost. Moreover, uploading
excessive duplicate data leads to a waste of storage resources. In this
study, to address these issues, with a double-copy storage model for
blockchain off-chain storage, a novel public auditing scheme with
client-side deduplication is proposed to reduce the storage overhead
of nodes and check the integrity of the off-chain data. Based on
smart contracts, our scheme could realize efficient user ownership
and off-chain data integrity verification automatically. In addition,
both data encryption and deduplication are achieved based on
message-locked encryption and an improved authenticator gener-
ation algorithm. Security analysis and experimental comparisons
show that the proposed scheme is effective and practical.

Index Terms—Blockchain, client-side deduplication, off-chain
distributed storage, privacy-preserving, public auditing, smart
contract.

I. INTRODUCTION

IN RECENT years, blockchain [1] has become increasingly
significant with the development of society and technology.

Many applications have been proposed built on top of the
blockchain, such as medical information sharing and supply
chain tracking. All of these applications will store their data
in the blockchain. In addition, owing to the characteristics of
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decentralization and anonymity of blockchain, many users tend
to upload some sensitive data to the blockchain, ensuring that the
data are unforgeable and tamper-proof. However, according to
some studies [2], [3], the slow packing speed and small capacity
of current blocks make satisfying the growing demand of users
difficult for large data uploads. To solve the scalability problem
in blockchain, the off-chain storage model is introduced [4],
where an off-chain storage network is formed by blockchain
nodes or other storage services, and metadata is stored in an
on-chain ledger. Thus, the storage space and efficiency are
improved. However, there still exists a big security issue for
blockchain off-chain storage.

In the traditional blockchain, the data is stored in the ledger,
which is distributed with copies in all blockchain nodes. The
failure of one node will not affect the data reliability. However,
for the off-chain model, the data might only be stored in one
node without any other copy. After uploading the data to the
blockchain, the user might delete the source data. In this case,
the data will be lost if a malicious off-chain node deletes that
data marked as cold data. Usually, data auditing schemes allow
users to verify data integrity remotely by checking partial data
blocks with random challenge values without downloading the
entire data. Ateniese et al. [5] proposed the concept of provable
data possession (PDP) to achieve efficient remote data auditing.
Moreover, improved schemes [6], [7], [8] have been proposed
to promote the development of data auditing. Thus, to ensure
data integrity and improve the availability of storage services,
an auditing mechanism that protects the data in off-chain storage
nodes is necessary.

Unfortunately, only data auditing is not enough. Based on [9],
approximately 75% of the data stored in a storage provider
is repeatedly uploaded by users. Thus, data deduplication is
also should be considered in data auditing for blockchain off-
chain storage, which could significantly reduce storage burden.
Especially encrypted data deduplication is more pratical for
blockchain storage, which could protect the data accessed by
off-chain nodes. The user usually prefers to store the data in
the ciphertext. Therefore, to save storage resources, convergent
encryption (CE) [10] has been proposed to implement encrypted
data deduplication [11], where different users can encrypt the
same plaintext into the same ciphertext such that the storage
providers can detect and remove duplicate copies of encrypted
data. Based on the benefits afforded by CE, many improved
schemes [12], [13], [14], [15] have been proposed to enhance
deduplication. Also, some data auditing schemes [16], [17] with
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data deduplication support are proposed by combined with the
above CE schemes.

However, these auditing schemes cannot be directly used
for blockchain, especially for the off-chain storage model [4].
Many existing schemes make a third-party auditor (TPA) to
generate random challenge values and perform the auditing task.
However, it is difficult in blockchain where no one centralized
node to generate such values. In this case, some blockchain-
based schemes use blockchain nonce value to generate challenge
values [18], [19]. However, current blockchain-based auditing
schemes are designed to perform data auditing for a storage
service, or multiple storage services, which store multiple copies
of data. These cannot be used to audit the off-chain data with a
fully distributed storage networks. Moreover, many data auditing
schemes require using both files and authenticators to verify
data integrity. However, these schemes tend to focus only on file
deduplication without addressing authenticator deduplication.
According to [20], authenticators may occupy more storage
space than the data blocks. Therefore, achieving authenticator
deduplication is critical for more effective space-savings.

For these challenges and issues in auditing schemes, a practi-
cal and secure data auditing scheme with deduplication support
for distributed off-chain storage model remain lacking.

A. Contributions

According to the preceding discussion, while off-chain dis-
tributed storage is a desirable option, existing schemes do not
achieve both encrypted data and authenticator elimination, or
even public ownership and integrity verification. Therefore,
based on the existing research work, in this study, an efficient
integrity auditing mechanism with secure deduplication for
blockchain off-chain storage is proposed. The main contribu-
tions are as follows.
� Focusing on data availability and duplication issues, our

scheme uses a double-copy storage model for off-chain
distributed storage to protect user data from a single point
of failure, while using the HCE2 algorithm and improved
authenticator generation algorithm to achieve both data and
authenticator deduplication, as well as ensure consistency
of user data. In addition, our scheme ensures that users who
upload duplicate data only provide proof of ownership to
the smart contract instead of encrypting all data, thereby
considerably reducing computational overhead and meta-
data redundancy.

� Considering the truthfulness of data integrity audit results,
the proposed scheme uses smart contracts as a trusted audit
platform to achieve public auditing. Based on this, a novel
auditing protocol is designed to verify the integrity of data
stored in off-chain storage nodes, and the audit results are
published on the blockchain to avoid repeated audit tasks.

� Our scheme supports batch auditing to improve the ef-
ficiency of data auditing. Theoretical analysis and ex-
periments performance show that our scheme has lower
overhead and can effectively protect user data.

B. Organization of the Rest Paper

The rest of this study is organized as follows. Related research
on data auditing and deduplication is reviewed in Section II.

Section III presents the preliminary content and definitions. The
detail of the scheme is presented in Section IV. The security
of this scheme is analyzed in Section V. Section VI presents
and analyzes the experimental results. Finally, we conclude this
study and describe the future work in Section VII.

II. RELATED WORK

To verify the integrity of users’ data in storage servers, various
data auditing schemes have been proposed. The notion of PDP
was introduced by Ateniese et al. [5], which uses a random
sampling strategy to effectively verify data integrity without
downloading the complete data. Since then, several PDP-based
auditing schemes have been proposed to enhance security and ef-
ficiency. However, these schemes are not friendly for users with
low computational resources. To reduce the computing burden
on users, a dynamic PDP mechanism was proposed by Zhao et
al. [21], which signed a contract with a third-party auditor (TPA)
to achieve data auditing and can reduce computation overhead
of TPA. To protect users’ privacy, Yang et al. [22] proposed
an identity-based PDP mechanism that achieves encrypted data
integrity verification. Considering the retrievability of users’
data, a novel notion called Proof-of-retrievability (PoR) was
proposed by Juels et al. [6] based on the sentinel technique. To
improve the audit efficiency, Shacham and Waters [7] proposed
an improved PoR mechanism by introducing erasure coding and
BLS aggregate signature [23], which supports batch auditing.

However, TPAs as untrustworthy third parties may face audit
trust issues. The rise of blockchain [1], [24] has driven scheme
improvements. Zhang et al. [25] proposed a certificateless public
verification scheme, where TPA is required to record each verifi-
cation result on the blockchain. Moreover, if the TPA faces a sin-
gle point of failure, subsequent audit tasks will not be carried out.
To solve the issue, Wang et al. [26] designed a non-interactive
data auditing scheme, where the challenge process no longer
requires a TPA, but instead leverages blockchain public informa-
tion. Li et al. [27] presented an MHT-based [28] auditing scheme
where the hash tags are stored on the blockchain and used to
regenerate an MHT. Although these schemes use blockchain
to store public verification information, the verification process
is performed by users, which increases user communication
and computational overhead. The development of blockchain
smart contracts brings new approaches to trusted auditing. Xu
et al. [29] proposed a contract-based auditing scheme, where
smart contracts act as trusted auditors to ensure the authenticity
of audit results and resist single points of failure. Furthermore,
Yuan et al. [30] used smart contracts to execute fair arbitration
to protect the interests of users whose data is corrupted by a
malicious cloud storage provider. However, the above scheme
consumes a large amount of gas for smart contract computation,
which is impractical in a real environment. In some studies, to
address the latency problem that exists in the centralized audit
model of edge computing [31], Li et al. [32] designed distributed
consensus mechanisms where edge devices can collaborate with
each other to verify data integrity. But without proper incentives,
edge servers may not participate in consensus. To address this
challenge, blockchain-based EdgeWatch [33] was proposed to
incentivize edge devices.
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Moreover, eliminating redundant data based on integrity au-
diting to reduce the storage burden on the storage provider
is still a problem. None of the above schemes consider data
deduplication. Depending on whether the stored data is en-
crypted or not, deduplication techniques [34] are divided into
two categories: deduplication of plaintext and deduplication of
ciphertext. It is easy to achieve plaintext deduplication. However,
using conventional encryption algorithms (e.g., AES, DES) to
encrypt files is difficult to remove duplicate files. Because dif-
ferent users encrypt same files into different ciphertexts using
different private keys. For privacy-preserving deduplication, the
thought of CE was presented by Douceur et al. [10] used to
remove the duplicate encrypted data. Subsequently, to lessen
the risk of data being illegally obtained by malicious users
due to file tags leakage in CE, the notion of message-locked
encryption (MLE) was introduced by Bellare et al. [12] To
achieve efficient deduplication and save more storage space,
some schemes [35], [36] implemented block-level deduplica-
tion. However, too many encryption operations and ciphertext
deduplication also consume a lot of computational resources. To
overcome this challenge, Miao et al. [37] first proposed a proto-
col using proofs-of-ownership (PoWs) based on the chameleon
hash function without key exposure, which enables users to
efficiently convince a verifier that he/she indeed owns entire
data.

To maximize the benefits of integrity auditing, Zheng and
Xu [38] introduced a concept called proof of storage with
deduplication (POSD), which aims to protect the integrity of
user data while achieving deduplication. However, this model
is still deficient. The combination of the two modules causes
a huge computational and storage overhead originating from
overgenerating file tags and authenticators. To solve the these
issues, Xu et al. [19] devised an elaborate scheme, where au-
thenticators used in integrity verification are applied to proof
of ownership. To protect data privacy and eliminate untrustwor-
thy TPA, Tian et al. [39] proposed a proof of storage scheme
with encrypted data deduplication based on blockchain, which
protects data privacy while achieving shared auditing by using
double-server model.

The single point of failure issue of centralized storage is also
worth being considered compared to TPA. To improve data
availability, massive auditing schemes based on decentralized
storage have been proposed. Storj [40] stored files decentral-
ized on different personal computers and introduced a private
storage auditing framework, whose storage proofs are publicly
available and verifiable. However, it still has some centralization
problems. Siacoin [41] is a decentralized cloud storage platform
based on blockchain. It sends encrypted file chunks to distributed
network storage, and users manage the data through private keys.
Filecoin [42], based on IPFS, used a unique proof of space and
time (PoST) consensus mechanism to verify that each node is
actually saving data. However, the major deficiency of filecoin is
that there is no data persistence guarantee mechanism. The above
three distributed storage schemes provide more decentralized
storage resources for more users and increase the availability of
data. Besides, Tian et al. [39] presented a double-server POSD
protocol that executes ciphertext PoWs and achieves shared

auditing. However, this audit approach may threaten server
collusion and affect the truthfulness of integrity verification
results. Thus, it is important to achieve data auditing as well
as client-side file and authenticator deduplication in off-chain
distributed storage in a trustworthy manner.

III. PRELIMINARIES AND DEFINITIONS

A. Preliminaries

1) Hash-and-Convergent-Encryption-2 (HCE2): It is de-
rived from Message-Locked Encryption (MLE) [12]. Different
from encrypting data using their own private key, users first
get the convergence keys by calculating the hash of the data
blocks and then encrypt the original data blocks using calculated
keys. Based on this, different users who have the same data
can obtain the same key and ciphertext. Thus, it succeeds in
achieving ciphertext deduplication. In addition, for the issue that
the consistency of data downloaded by users from the server may
be corrupted, HCE2 designs a tag-checking mechanism. The
user will regenerate the labels using plaintext after decryption
and compare them with the original labels. Users accept the data
only if the tags are consistent. The details of the HCE2 algorithm
are as follows.

Definition 1. HCE2 algorithm is comprised of the following
algorithms : (HCE2.KeyGen, HCE2.Encrypt, HCE2.TagGen,
HCE2.Decrypt).
� HCE2.KeyGen(Para,mi) → ki : It is a key generation

algorithm that inputs the system parameter Para and data
block mi, and outputs the encryption key ki.

� HCE2.Encrypt(mi, ki) → ci : It is used to encrypt the
original plaintextmi into ciphertext ci using the encryption
key ki.

� HCE2.TagGen(ci) → Ti : It is responsible for calculating
the hash value of each ciphertext block ci to generate the
block tag Ti.

� HCE2.Decrypt(ki, ci) → mi : It is used to decrypt the
ciphertext ci into plaintext mi using the encryption key
ki based on the symmetry of the HCE2 algorithm.

2) Bilinear Maps: A bilinear mapping has an expression of
(p,G1, G2, e), where p is a large prime number, G1 and G2 are
two multiplicative cyclic groups of order p, and bilinear map
e : G1 ×G1 → G2 has the following properties:
� Bilinearity: ∀g, h ∈ G1, a, b ∈ Zp, e(g

a, hb) = e(g, h)ab.
� Non-degeneracy: e(g, g) �= 1.
� Computability: An effective algorithm is available to im-

plement the mapping e.
3) Blockchain and Smart Contract: Blockchain [3] is mainly

used to store transaction information and possesses the feature
of being tamper-proof. It consists of two parts: blocks and
chain structure, where blocks are generated by nodes based
on consensus algorithms, and a new block is appended to the
previous block to form a chain structure. Each block is marked
with the hash value of the previous block, which makes the block
information difficult to be tampered with. Each blockchain node
holds a copy of the ledger data.
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Benefiting from the trusted environment enabled by
blockchain technology, smart contracts [24] achieve automatic
execution of trusted transactions as part of the Ethereum smart
contract system. A smart contract is an agreement that is jointly
committed to by the contract participants and can be executed
quickly to improve transaction efficiency.

B. System Model

The system model of the scheme includes four entities:
blockchain storage system, users, smart contracts, and system
manager. They have the following definitions:
� Blockchain Storage System (BSS): It is a decentralized

storage network based on blockchain consisting of numer-
ous storage nodes (SNs), each of which connects to the
blockchain network and provides storage services for users.
For uploaded files, BSS arranges several storage nodes for
the user to keep two copies of the file, where each storage
node stores a partial chunk of the file. Nevertheless, storage
nodes are not all honest and may corrupt or delete users’
data. Therefore, storage nodes need to periodically com-
plete integrity verification tasks with the assistance of smart
contracts. Dishonest storage nodes will be punished, whose
bad storage records will be published on the blockchain.

� User (U): Before uploading the data to storage nodes, the
user needs to check if the data is already stored, if not, the
user is called the initial user (U1), otherwise, it is called
the subsequent user (U2). U1 sends the entire encrypted
data and authenticators to BSS. U2 verifies ownership of
the data on the ownership contract without uploading the
entire data. In addition, data uploaded to the storage nodes
are periodically checked for integrity by smart contracts.
The audit results are published on the blockchain to avoid
repeated audit tasks.

� Smart Contract (SC): A smart contract is a piece of code
that executes automatically on the blockchain. The contract
execution process is open and transparent, and the results
are published in the blockchain ledger. This scheme uses
multiple smart contracts to perform a variety of operations,
which include user data storage allocation, checking du-
plicate data blocks, generating challenge values, receiving
proof of ownership and proof of integrity, and verifying
user ownership and data integrity.

� System Manager (SM): It is used to generate the necessary
parameters.

C. Definition

The proposed scheme includes seven algorithms (Setup, U-
KeyGen, B-KeyGen, Encrypt, TagGen, AuthGen, Decrypt) and
two protocols (Upload, Audit).

1) Setup(λ) → (Para) : By inputting a security parameter
λ, the algorithm generates the necessary public system
parameter Para.

2) UKGen(Para) → (Xu, PKu) : Executed by SM, in-
putting system parameters Para, the algorithm outputs
the user key pairing (Xu, PKu).

3) B-KeyGen(mi) → ki : Inputting the file block mi while
F = m1‖ · · · ‖mn, the algorithm returns convergence key
ki.

4) Encrypt(ki,mi)→ ci : The algorithm encrypts the plain-
text mi into ciphertext ci by using the convergence key
ki.

5) TagGen contains the following two sub-algorithms:
� B-TagGen(ci)→Ti : The algorithm inputs ciphertext block
ci to get tag Ti.

� F-TagGen({Ti})→ t∗ : The algorithm inputs all block tags
{Ti} to get the auxiliary file tag t∗.

6) AuthGen(Xu, ci,j)→ (σi) : The algorithm inputs Xu and
ci,j to obtain the authenticator σi.

7) Upload: The user checks if the file F is already stored
in BSS before uploading it and executes the following
protocol.

� Initial upload: IfF is not stored, the user executes the above
algorithms and following protocol.

� The user first uploads file tag set T = {Ti} to check
duplicate data blocks.

� SC is used to compare T with the local tags and requires
the user to upload the unduplicated block set Cu through
file tag set Tu and authenticator set {σi} to SN .

� After receiving Cu and {σi}, each SN checks consistency
between Cu and Tu, and stores the assigned Cu and {σi}.

� Subsequent upload: If F has been stored in BSS, U2 is
required to execute PoWs protocol.

� PoW.Chal(Para) → chalx : The algorithm outputs a chal-
lenge value chalx used for deduplication.

� PoW.Proof(chalx, {cx}) → Proofx : Inputting chalx and
the challenged data block set {cx}, the algorithm generates
a proof of ownership Proofx.

� PoW.Verify({σk}, P roofx) → 0/1 : Storage nodes gener-
ate aggregated authenticators set {σk}, based on Proofx
and {σk}, the algorithm returns the ownership verification
result.

8) Audit: The following three algorithms are used for data
auditing.

� Aud.Chal(Para)→ chaly : The algorithm inputs Para to
get a challenge value chaly for integrity verification.

� Aud.Proof(chaly, {cy}, {σy}) → Proofk : Based on
chaly , challenged block set {cy} and authenticator set
{σy}, the algorithm returns the integrity proof Proofk =
({μk}, {σk}), where {μk} is generated from storage nodes
that own random one copy (copy-1 or copy-2) and {σk} is
generated from storage nodes that own the other copy.

� Aud.Verify(Proofk) → (0/1) : Taking the integrity proof
Proofk as input, the algorithm returns the auditing result.

9) Decrypt(ki, ci) → mi : Owing to the symmetry, the algo-
rithm decrypts the ciphertext ci to plaintext mi by using
the same convergence key ki.

D. Security Model

In this study, users and blockchain storage nodes are con-
sidered dishonest. Storage nodes may discard or corrupt users’
data to save storage resources and provide fake storage proof to
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Fig. 1. The overall model of the proposed scheme.

the smart contract. Malicious users may abuse the deduplication
mechanism to illegally access the specified data while they do
not possess the data.

Definition 2. For the challenge nonce chal, no adversary can
pass the consistency verification with a non-negligible probabil-
ity. This study aims to reach the following five security goals.

Data Privacy: After data encryption, our scheme prevents
storage nodes from accessing the original plaintext.

Storage Correctness: If the storage nodes pass the integrity
verification, it means they must honestly store the user data.

Batch Auditing: We require that smart contracts can perform
multiple audit tasks of stored data simultaneously. If a storage
node generates a correct response to the integrity challenge, it
must honestly store all challenged blocks.

Data Consistency: When the user downloads data that is
inconsistent with the original data, it will be unable to get
the original plaintext by decrypting the existing ciphertext. In
this case, comparing the re-generated tags after decrypting the
ciphertext with the original data tags is necessary.

Resistant to Single Point of Failure: The double-copy storage
model used in this scheme ensures that the user can still access
the specified data in case of single copy failure.

IV. THE PROPOSED SCHEME

In this part, we provide a detailed description of the proposed
public auditing scheme with secure deduplication for blockchain
off-chain storage. Table I presents the necessary notations.

A. Overview

To save storage space and verify the data integrity of stor-
age nodes in the blockchain network, we propose an efficient

data auditing scheme with secure deduplication for blockchain
storage. For a group of users who want to upload the same
data, only the initial user is required to upload the complete
data while the other users only execute the PoWs protocol. By
using the HCE2 algorithm, users can encrypt the same plaintext
into the same ciphertext, thus enabling data privacy protection
as well as ciphertext deduplication. Then, to protect the user
from losing data under a single point of failure, the ciphertext
is stored in a double-copy storage model. If the pre-uploaded
data is already stored in storage nodes, the user only needs
to provide the SC with the proof of ownership, and if the
proof passes, there is no need to upload the entire data. After
uploading data, users will regularly verify data integrity through
SC used to challenge storage nodes with randomly selected
data blocks. Then, storage nodes generate the corresponding
proof of integrity and send the proof results to SC. Finally,
SC verifies whether the integrity is correct. It should be noted
that our scheme can be adapted to multiple copies and the SC
can perform data auditing automatically with a public key. The
overview of our scheme is shown in Fig. 1.

B. Setup Process

SM executes Setup(λ) algorithm to generate system pa-
rameters. Then, SM chooses two multiplicative cyclic groups
G1 and G2 with order p to establish a bilinear map
e : G1 ×G2 → GT . Moreover, a generator g is selected
from G2 and random elements u1, u2, . . ., us are from
G1, two hash functions H1 : {0, 1}∗ → Zp

∗, H2 : {0, 1}∗ →
G1, and f is a pseudorandom function f : {0, 1}∗ →
[1, n]. Finally, SM releases the system parameters Para =
{G1, G2, e, p, g, u1, u2, . . ., us, H1, H2, f} on the blockchain.
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TABLE I
NOTATIONS

C. User Key Generation Process

Based on Para, SM runs U-KeyGen algorithm to generate a
private key Xu ∈ Zp for a user. Then, SM calculates public key
PKu = gXu and publishes PKu on the blockchain.

D. Upload Process

When U uploads a file F = {mi} (i ∈ [1, n]), U calculates
t = H1(F ) as a file identifier. Next, U checks whether t exists
in the data index table on the blockchain. In particular, the
data index table is used to store file information including file
identifiers, user names and storage node address set. If t does
not exist, U will perform the initial upload protocol. Else, U
will perform the subsequent upload protocol.

1) Initial Upload: For the file F , U1 executes the initial
upload protocol. The detailed process is as follows.

1) U1 executes the B-KeyGen algorithm to generate block key
ki = H1(mi), Encrypt algorithm to generate ciphertext
ci = HCE2.Enc(ki,mi), TagGen algorithm to generate
tagTi = H1(ci). Then,U1 splits ci into s segment ci,j(j ∈
[1, s]) and runs AuthGen algorithm to generate authenti-
cator σi = (Mi ·

∏s
j=1 u

ci,j
j )Xu , where Mi = H2(t‖i).

2) U1 sends block tag set T = {Ti} to BSS for checking
duplicate data blocks.

3) SC compares T with the local tag set to return the dupli-
cate tag set Td and unique tag set Tu. Then, SC requires

TABLE II
DATA LOCATION TABLE

U to send the unique ciphertext set Cu corresponding to
Tu.

4) After receiving the Cu, storage contract checks whether
Ti = H1(ci), ci ∈ Cu. If pass, the storage contract gen-
erates the second file tag t∗ = H1(T1‖ · · · ‖Tn) and
assigns {σ = {σi}, Cu} to storage nodes. Here, a file
will be stored with two copies. Assume that v-th copy
is stored in the storage node list {SNv,k|v = 1, 2 and
k = {1, . . .,K}}, where K is practical number of node
storing file F and SNv,k is calculated by some distributed
storage algorithms, such as DHT, Chord. Table II shows
an example of storage relationship. Note that {SN1,k} ∩
{SN2,k} = ∅, and ρk denotes the data block set stored in
SNv,k.

5) After the storage node stores the corresponding data
blocks and authenticators, the data index table will be
published on the blockchain for deduplication.

6) After the data index table is created, U1 removes the file
F and authenticator set σ from the local storage.

2) Subsequent Upload: If file F is duplicated, U2 will per-
form a deduplication protocol with SC, detailed deduplication
operations are shown as follows.

1) After receiving the upload request from U2, SC exe-
cutes PoW.Chal algorithm and generates a challenge value
chalx = (c, τ) for verifying ownership, where c ∈ [1, n]
and τ includes current block hash and timestamp which
cannot be controlled by SNv,k and users.

2) After receiving chalx, U2 executes PoW.Proof algorithm
to calculate si = f(τ‖i), vi = H1(τ‖si), i ∈ [1, c]. Then,
U2 only runs B-keyGen, HCE2.Enc to get ksi = H1(msi)
and csi = HCE2.Enc(ksi ,msi). Then,U2 splits csi into
csi,j and calculates μj =

∑c
i=1 vi · csi,j mod p. Finally,

U2 sends Proofx = {μj} to SC.
3) Besides, SC also calculates the set of the data block

indexes S = {si} and coefficients V = {vi}. According
to Table II, SC sends {S, V } to SNv,k. Then, SNv,k

calculates σk =
∏

si∈ρk∩S σvi
si

and Zk =
∏

si∈ρk∩S Mvi
si

.
Note that, this part could be executed concurrently in
different storage nodes.

4) SC runs the PoW.Verify algorithm, ifProofx = {μj} and
PKu = gXu are correct, we get

e(

K∏
k=1

σk, g) = e

⎛
⎝

K∏
k=1

Zk ·
s∏

j=1

u
μj

j , PKu

⎞
⎠ (1)

If the ownership verification is passed, SC will add U2 to
the data index table in the blockchain. The correctness of
the subsequent upload protocol is proved by the following
formula.
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Algorithm 1. PoW.Verify
Require:Proof of ownership Proofx and {σk, Zk}(1≤k≤K)

Ensure:Result of ownership proof re
1: Calculate Left = e(

∏K
k=1 σk, g)

2: Calculate Right = e(
∏K

k=1 Zk ·∏s
j=1 u

μj

j , PKu)
3: if Left = Right then
4: Set re = 1
5: U2 is added to index table on the blockchain
6: else
7: Set re = 0
8: end if
9: return re

Correctness : The correctness analysis of the bilinear pairing
in the ownership verification process is as follows.
e(
∏K

k=1 σk, g)

= e(
∏K

k=1

∏
si∈ρk∩S σvi

si
, g)

= e(
∏c

i=1 σ
vi
si
, g)

= e(
∏c

i=1(Msi ·
∏s

j=1 u
ci,j
j )Xu·vi , g)

= e((
∏c

i=1 M
vi
si
) · (∏c

i=1

∏s
j=1 u

ci,j ·vi

j ), gXu)

= e(
∏c

i=1 M
vi
si

·∏s
j=1 u

μj

j , PKu)

= e(
∏K

k=1

∏
si∈ρk∩S Mvi

si
·∏s

j=1 u
μj

j , PKu)

= e(
∏K

k=1 Zk ·∏s
j=1 u

μj

j , PKu)

E. Integrity Auditing

During the data audit phase, SC executes the following pro-
tocols with SNj,k to check data integrity.

1) SC executes the Aud.Chal algorithm to generate the chal-
lenge value chaly = (c, τ), which has same definition as
the subsequent upload phase.

2) After obtaining chaly , SNv,k executes the Aud.Proof
algorithm. Firstly, for i ∈ [1, c], these nodes calculate
ai = f(τ‖i), forming A = {ai}, where τ cannot be con-
trolled by SNv,k, each SNv,k has no way to know this
information in advance. For each ai, SNv,k calculates
bi = H1(τ‖ai). In each audit phase, for two groups of
storage nodes {SN1,k} and {SN2,k}, a randomly selected
group of nodes will be responsible for generating a linear
combination of data blocks μk,j =

∑
ai∈ρk∩A cai,j · bi,

and the other group generates aggregated authenticators
σk =

∏
ai∈ρk∩A σbi

ai
.

3) Upon receiving {μk,j} and {σk}, SC executes Aud.Verify
algorithm to check the correctness of integrity proof.

Correctness: Proof of correctness for integrity verification
protocol and ownership verification protocol can be applied
mutually. Due to space limitations, it will not be shown here.

F. Decrypt

The user shows 〈t, t∗〉 before obtaining the original file F
from BSS. After downloading the ciphertext c1, c2, . . . , cn, the
user performs the following operations.

Algorithm 2. Aud.Verify
Require:Proof of integrity {μk,j}, {σk}
Ensure:Result of integrity verification re
1: Calculate μj =

∑K
k=1 μk,j

2: Calculate σ =
∏K

k=1 σk

3: Calculate Left = e(σ, g)
4: Calculate Mai

= H2(t||ai)
5: Calculate Right = e(

∏c
i=1 M

bi
ai

·∏s
j=1 u

μj

j , PKu)
6: if Left = Right then
7: Set re = 1
8: else
9: Set re = 0

10: end if
11: return re

� Based on ciphertext ci, the user executes
B−TagGen(ci) → Ti algorithm and generates the
block tag Ti.

� Based on the block key ki and ciphertext ci, the user runs
Decrypt algorithm HCE2.Decrypt(ki, ci) to calculate
plaintext mi.

� The user checks whether the equation t∗ =
H1(T1‖ · · · ‖Tn) holds. If pass, the user accepts plaintext
mi, else, rejects it.

G. Batch Auditing

Performing multiple audit tasks simultaneously facilitates
audit efficiency. In this subsection, we will describe the batch
auditing process in detail. For multiple files uploaded by users,
firstly, the contract generates different challenge values based on
the total number of blocks of different files. In this case, different
files will be one file in the virtual view. Then the contract
queries the data distribution table to send the challenge values to
the corresponding storage nodes. After receiving the challenge
value, the storage node generates the corresponding challenge
value index and coefficients according to the challenge value.
Then uk and σk are calculated. Finally, send (uk, σk) to the
contract. After receiving the parameters, the contract aggregates
uk and σk to formU and σ, and calculatesMi. Finally, a bilinear
pairing operation is applied to complete the batch audit.

V. SECURITY ANALYSIS

The security analysis of the above security goals is explained
in detail below.

Assumption 1. (Divisible Computation Diffie-Hellman
(DCDH) problem) Given g, gx, gy ∈ G1, where x and y ∈ Zp,
there is no algorithm that can compute gy/x in polynomial
time [43].

Theorem 1. Malicious storage nodes that do not store data
honestly are unable to pass the integrity verification during the
audit process.

Proof of Theorem 1. After receiving the integrity proof
prooft = (σt, μt), the contract checks the completeness of the
data. We will prove that the adversary cannot pass the integrity
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TABLE III
COMPARISONS OF COMPUTATION COSTS

TABLE IV
COMPARISON OF FUNCTIONS

verification through false proof prooft
′ = (σt

′, μt
′) without

holding the complete data by the following analysis.

e(

c∏
i=1

σbi
ai
, g) = e

⎛
⎝(

c∏
i=1

M bi
ai
)

s∏
j=1

u
μj

j , PKu

⎞
⎠ (2)

As seen from (2), the contract requires to calculate the
corresponding

∏c
i=1 M

bi
ai

according to the challenged blocks,
which will result in theσ′

t andμ′
t generated by the adversary who

does not possess the correct challenged blocks to be detected
by the tag binding mechanism.

Moreover, if the adversary wants to achieve prooft
′ = prooft

with F ′ �= F , a μ′
t based on t, c, τ, Para should be solved.

Assuming the existence of an algorithmA1, it is possible to solve
for the μ′

t in polynomial time for given t, c, τ, Para. Then, we
redesign an algorithm A2, which can solve the x within given
g, gy, gxy as follows:

1) ∀τ ∈ Zp, let n = c = 1, f(·) ≡ 1, σi = gxy , gXu = gy ,
generating the t, Para.

2) The μt can be solved in the following equation based on
algorithm A1 by using t, c, τ, Para:

e(σb1
1 , g) = e

⎛
⎝(M b1

1 )

s∏
j=1

u
μj

j , gXu

⎞
⎠ (3)

3) As f(·) ≡ 1 and bi = f(1, τ), the above equation evolves
to

e(σ1, g) = e

⎛
⎝M1

s∏
j=1

u
μj

j , gXu

⎞
⎠ (4)

4) Compute α = M1

∏s
j=1 u

μj

j .

5) Note that σi = gxy, gXu = gy , we thus get

e(gxy, g) = e(α, gy) (5)

6) By the properties of bilinear mapping, we get

α = gx (6)

The gx can be solved by the algorithm A2 in a polynomial
time by using g, gy, gxy , which is in contradiction to Assumption
1. Thus, the proof is finished.

Theorem 2. This scheme ensures that the storage nodes store
data honestly and that the results of the verification are true.

Proof of Theorem 2. The proposed scheme achieves trusted
auditing based on smart contract. This means that the proof and
verification results generated during the auditing process can be
shared among users for rechecking.

Theorem 3. Data privacy can be protected in the proposed
scheme.

Proof of Theorem 3. Based on the MLE (HCE2) [12], the
proposed scheme enables the user data with PRV$-CDA level
security. Only the user who has the original plaintext can decrypt
the ciphertext using the key associated with the plaintext. Thus,
it is impossible for storage nodes and malicious adversaries to
retrieve plaintext even if they have gained the encrypted data
illegally.

Theorem 4. The proposed scheme ensures that users can still
access the data in case of a single point of failure.

Proof of Theorem 4. Benefit from blockchain, the storage node
can offer more storage space to the users. Based on this, the
proposed scheme distributes the double-copy data in several
storage nodes which is more effective to increase the fault
tolerance of data in case of a single point of failure.
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VI. PERFORMANCE EVALUATION

In this section, we analyze the performance of our scheme
and compare it with two related schemes [19], [30] in the
following aspects: functionality, computational overhead and
storage overhead.

A. Experiment Environment

In this part, we implement the proposed scheme based on
BN256 curve with 128-bit security in the Ethereum platform and
Golang language. The test environment is Intel(R) Core(TM)
i5-7400 CPU 3.00 GHz 16 GB RAM, Windows 10. In particular,
we use SHA-256 to generate the convergent key and AES-128
to encrypt users’ data in the HCE2 algorithm. We set that the
smart contract will verify each user’s uploaded data once in an
audit period.

We first compare our scheme with compared schemes theo-
retically. According to Ng et al.’s work [44], 4 KB is the most
suitable block size for gaining maximum space-saving efficiency
of the deduplication, we set the data block size to 4 KB, each
block is divided into 128 sectors, each sector is exactly 256 bits
in size, which is same as the block size in [19], [30]. Assume
that the number of blocks in the compared scheme is n1, thus,
n1/n = 128. c denotes the number of challenged blocks. Due to
the negligible overhead of the hash operation, we will not discuss
it. We use E to show an encryption operation in HCE2, Mul
to show a multiplication operation, Exp to show an exponent
operation, and Pair to show a bilinear map. Table III shows the
computational cost of [19], [30] and our scheme.

B. Comparison of Functions

As shown in Table IV, we show the comparison results of
functions. The notion of “Data loss prevention” demonstrates
whether compared schemes can protect users from data loss
under a single point of failure, “Authenticator deduplication”
indicates whether these schemes can achieve both data dedu-
plication and authenticator deduplication. In addition, the no-
tion of “Trusted auditing” represents whether those schemes
can eliminate untrusted third parties and achieve trust audit.
Additionally, Yuan et al.’ scheme [30] and our scheme achieve
encrypted data upload, which ensures data privacy. The above
schemes all achieve batch auditing. Meanwhile, compared to
Xu et al.’ scheme [19], “block-level” properties save space and
bandwidth effectively. In summary, our scheme is more efficient
than compared schemes.

C. Computation Overhead

In this subsection, we conduct a series of operations to test
the computation costs that are performed off-chain and on-chain
of all compared schemes, respectively.

1) Off-Chain Part Costs: In this part, we evaluate the off-
chain computation overhead with compared schemes. Fig. 2
contains the four off-chain operations: initial upload, ownership
proof generation, integrity proof generation and ownership proof
verification. For a clearer description, we take the number of

Fig. 2. Comparisons of off-chain costs.
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Fig. 3. Comparisons of on-chain costs.

blocks of [19] as the benchmark. Fig. 2(a) shows the computa-
tional overhead in the initial upload phase. We can see that the
time cost increases roughly linearly for all schemes, where the
time cost of [19] is 251 ms for 1280 blocks, 1319 ms for 6400
blocks, and 2531 ms for 12800 blocks. Scheme [30] uses en-
crypted data to generate the authenticator and the total overhead
is larger than scheme [19], 264 ms for 1280 blocks, 1346 ms
for 6400 blocks and 2598 ms for 12800 blocks, respectively.
From Table IV, our scheme needs fewer exponential operations
to generate authenticators, The final overhead is 131 ms for 1280
blocks, 659 ms for 6400 blocks and 1320 ms for 12800 blocks.

Scheme [30] essentially does not distinguish between initial
and subsequent uploads, and performs the same operation for
each data upload. Therefore, only the computational overhead
of scheme [19] and our scheme will be shown in Fig. 2. As can
be seen in Fig. 2(b), our scheme takes more time to generate
the ownership proof than [19], which is because our scheme
implements encrypted data storage to protect the privacy and
needs to encrypt the data first in each generation of proof of
ownership.

From Fig. 2(c), due to fewer exponential and multiplicative
operations, the overhead of our scheme is much lower than
that of [19]. Specifically, the cost of [19] is 65.46 ms for 300
challenged blocks and 98.48 ms for 460 challenged blocks, while
our scheme consistently consumes 1 ms.

Furthermore, Fig. 2(d) shows the total time cost comparison
of integrity-proof generation. For 300 challenged blocks, the
computation costs of two schemes [19], [30] and our scheme
are 32.9 ms, 33.9 ms, and 0.7 ms. For 460 challenged blocks,
the computation costs increase to 47.9 ms, 53.3 ms, and 0.8 ms,
respectively.

2) On-Chain Part Costs: We evaluate the on-chain overhead
by testing the gas consumption. Gas is the unit used to measure
workload on Ethereum. All kinds of transactions, storage, and
other operations generated on Ethereum require gas to drive the
Ethereum Virtual Machine (EVM) to work. That is to say, the
simpler an operation is, the less gas consumes. We measure each
on-chain operation of compared schemes 10 times to get average
gas consumption.

The comparison of the on-chain gas overhead is shown in
Fig. 3, containing three operations: challenge value generation,
ownership verification and integrity verification. From Fig. 3, it

TABLE V
NOTATIONS IN EVALUATION

is clear that for the same number of challenge blocks, our scheme
generates much less gas than [30]. Scheme [19] sends a constant
challenge value during each challenge and the overhead remains
the same. When challenging 300 blocks, the gas cost are 2.91×
104 gas, 5.9× 105 gas and 2.61× 104 gas, respectively. In our
scheme, the ownership verification final operation is performed
by the smart contract, and the generated overhead is independent
of the number of challenge blocks, which is always maintained
at 6.88× 106 gas.

According to Ateniese et al. [5], if the total number of data
blocks is 10000 and the damaged rate of outsourced data block
is 1%, the precision rates of discovering the malicious behavior
of SNv,k are 95% for 300 challenged blocks, and 99% for 460
challenged blocks. From Fig. 3(c), the gas cost of our scheme
does not increase significantly with the increase of challenged
blocks, The major cause is that our scheme does not require
signature verification and excessive exponentiation operations.
The integrity verification costs of our scheme are 0.71× 107 gas
for 300 challenged blocks and 0.73× 107 gas for 460 challenged
blocks, while Yuan et al.’ scheme [30] consumes 2.63× 107 gas
and 4.04× 107 gas, respectively.

D. Storage Overhead

In this part, we evaluate the storage overhead of SN . For
a clearer expression, some necessary notations are shown in
Table V. Concerning storage cost, [30] adopts server-side dedu-
plication, for users with the same file F , storage nodes are
required to store nu(n1|G|+ 1|F |). Since [19] and our scheme
implement data and authenticator deduplication, only the ini-
tial user needs to upload the complete file and authenticators.
In addition, we also implement block-level data elimination,
so the final storage overheads for [19] and our scheme are
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n1|G|+ 1|F | and n|G|+ n−d
n |F |, respectively. Moreover, as

the data duplication rate d
n increases, the storage overhead in

the scheme will further decrease.

VII. CONCLUSION AND FUTURE WORK

Focusing on data redundancy and integrity issues in
blockchain off-chain storage, we propose a public auditing
scheme with secure deduplication. Based on the message-locked
encryption and improved authenticator generation algorithms,
our scheme achieves both encrypted data and authenticator
deduplication to save storage resources. Using smart contracts,
bilinear pairings, and a double-copy storage model, we effec-
tively implemented public data auditing while protecting user
data from a single point of failure in distributed storage. We
demonstrated that our scheme can achieve the desired security
goals and give detailed experimental results. The performance
evaluation suggests that the proposed scheme is efficient. In the
future, we will study the issues of efficient user revocation and
fair arbitration under this model.
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