
Computer Networks 193 (2021) 108055

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A trusted and collaborative framework for deep learning in IoT
Qingyang Zhang a,b, Hong Zhong a,b,∗, Weisong Shi c, Lu Liu d

a School of Computer Science and Technology, Anhui University, China
b Anhui Engineering Laboratory of IoT Security Technologies, Anhui University, China
c Department of Computer Science, Wayne State University, USA
d Department of Informatics, University of Leicester, UK

A R T I C L E I N F O

Keywords:
Collaborative framework
Trusted execution environment
Deep learning
Internet of Things

A B S T R A C T

More and more Internet of Things (IoT) applications provide intelligent services, with the development of
artificial intelligence algorithms, such as deep reinforcement learning. However, along with the trend of
utilizing a large model with high accuracy in AI-enabled IoT, resource-limited IoT devices are difficult to
handle these large-scale models with high response latency. By collaborating with edge nodes, the devices
could respond quickly. However, IoT applications contain a large amount of user privacy, and pushing data to
others might lead to privacy leakage. Inspired by the trusted execution environment technology, we propose a
framework that enables trusted collaboration for future AI-enabled IoTs, in terms of computation security and
transmission security, where the data could be processed in an isolated environment, and two approaches
are proposed to ensure the security in data transmission. Experimental results show that our framework
provides flexible and dynamic collaboration with low overhead and can effectively support collaborative edge
intelligence.
1. Introduction

With the growth of the Internet of Things (IoT), more and more IoT
devices are being deployed around people and enrich our daily life [1,
2]. According to the report from Ericsson [3], the IoT connections
will reach 26.9 billion by 2026. The IoT systems could be intelligent
by analyzing sensed data using artificial intelligence (AI) algorithms,
such as deep learning [4,5], deep reinforcement learning (DRL) [6],
etc. For example, the Amazon Alexa could understand people’s speech
and make a response, which acts as an intelligent assistant in a smart
home system. In traditional IoT systems, sensed data is often uploaded
to the cloud that is analyzed using AI algorithms. However, the data
transmission causes a high response time [7]. With the development of
AI technology, especially the introduction of DRL [6], things would be
smarter. For instance, autonomous vehicles rely on powerful AI algo-
rithms to analyze the surrounding environment [8,9], and DRL is one of
the solutions, which provides an end-to-end way to train models [10].
But, the complexity of the environment also makes the model larger. In
this case, with the requirement of ultra-low latency, autonomous vehi-
cles have to be equipped with high-performance hardware. However,
it is difficult to infer such large models on resource-constrained IoT
devices.

Typically, these resource-constrained IoT devices have to update
their sensed data to the cloud for analysis with high latency. And with

∗ Corresponding author at: School of Computer Science and Technology, Anhui University, Hefei 230601, China.
E-mail address: zhongh@ahu.edu.cn (H. Zhong).

billions of devices, the data is huge, resulting in a significant burden
on cloud centers. Edge computing [7,11,12], as a new computing
paradigm, is promising to reduce the burden of the cloud and the
response time of one service via the collaboration of end devices, edge
nodes, and the cloud. As shown in Fig. 1, the end devices could offload
the computation task to the nearby edge nodes with a lower transmis-
sion latency, resulting in a slower response time [13–15]. Taking the
killer application, edge video analytics, as an example, city cameras
could send areas to the cloud for further analysis, detected by a small AI
model, thus avoid the high latency and energy consumption associated
with running a large-scale AI model by them self [16,17]. However,
IoT data typically contains a significant amount of user privacy, and
user privacy could be learned from these data [18–20]. Edge nodes
typically do not have the same level of security protection as cloud
centers, and processing the data on such edge nodes might lead to a
high risk of privacy leakage. Thus, how to guarantee the security of data
and protect user privacy in a collaborative edge-cloud environment in
future AI-enabled IoT is an issue that must be addressed.

Homomorphic encryption technology [21] could process data in
encrypted without any knowledge about data so that it is usually
used for outsourcing service in the cloud. Thus, in edge collaboration
environment, the IoT devices could outsource data to the edge or
cloud with homomorphic encryption technology. However, the perfor-
mance is a big issue [22], especially for data encryption/decryption
vailable online 31 March 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108055
Received 20 November 2020; Received in revised form 3 March 2021; Accepted 23
 March 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:zhongh@ahu.edu.cn
https://doi.org/10.1016/j.comnet.2021.108055
https://doi.org/10.1016/j.comnet.2021.108055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108055&domain=pdf


Computer Networks 193 (2021) 108055Q. Zhang et al.
Fig. 1. Collaborative edge intelligence in AI-enabled IoT.

on the resource-constrained IoT devices and large AI model inferring
and training [23] on the edge. Recently, hardware-assisted trusted
execution environment (TEE), such as Intel Software Guard eXtensions
(SGX), has become increasingly popular [24,25], which could provide a
trusted, isolated, and secure execution environment for application thus
process data thus ensure the security of data in computing. Many TEE-
enhanced frameworks [24,26] are proposed. However, most of them
aim to provide a runtime or programming interface for application in
the local machine without any collaborative computing support, such
as Asylo [27], Occlum [28]. Part of them could provide a collabo-
rative mechanism between two parties. However, currently, no one
framework could provide a TEE-enabled collaboration in edge-enabled
IoT.

In this paper, we aim to design a trusted and collaborative frame-
work for future AI-enabled IoT, called TCFDL. We have explained
our motivating application and summarized its challenges and our
Contributions in the following sections.

1.1. Motivating application

As a typical application of the intelligent IoT and edge computing,
connected and autonomous vehicles (CAVs) [8,29,30] are equipped
with various sensors, such as cameras, radar, LiDAR, global navigation
satellite system, and analyze sensed data using computer vision and AI
algorithms. To process data in time, CAVs have to be equipped with
powerful computing devices worth tens of thousands of dollars [8]. As
envisioned by [8,29], the CAVs will be a computer on the wheel that
could install many third-party applications to improve ride experience.
In this case, the computation burden will significantly increase. Thus,
the collaboration between CAVs, as well as CAVs and edge nodes (such
as roadside units) could reduce CAV’s burden, by through sharing road
information and recognition results of autonomous driving.

However, in-vehicle data and application data contain a large
amount of user privacy, and transmitting this data to other edge nodes
or CAVs for collaboration might lead to potential privacy leakage is-
sues. Hence, if the security of data computing in a remote collaborative
CAV or edge cannot be guaranteed, users may not be willing to perform
collaborative computing.

1.2. Challenges

Although TEE could enable trusted and secure computing on the
IoT devices, edges and cloud centers, it still have several barriers in a
collaborative framework as followed.

Large-scale AI model in TEE. Typically, TEE can only provide
limited resources for protected applications, such as memory. For ex-
ample, Intel SGX only provides 90 MB of secure memory. In addition
to normal data processing applications, the AI-related application must
2

load the model file to memory then infer the model. In this case, the
memory overhead will much larger than the size of protected memory
in TEE, resulting in high latency overhead caused by frequent memory
exchange between protected memory and normal memory. Thus, in the
TEE-based trusted and collaborative framework, how to support large
AI models with only low overhead is a challenge.

Transmission security between applications. Although data is
protected when processed in TEE, the transmission between collabora-
tive applications also might lack if no any protection mechanism. In
our motivating application, CAVs have dynamic network topologies.
That also leads to dynamic changes in the collaborative relationship.
Typically, a scheduler could be used to dynamically schedule tasks
between CAVs and edges. However, it leads to a challenge that keeping
data confidentiality in the case of semi-trusted schedulers involved in
message routing.

1.3. Our contribution

To address the mentioned barriers, we designed a trusted and
collaborative framework for future AI-enabled IoT, which could en-
sure computation security and communication security in dynamic
environments. Our contributions are as follows:

• We propose a framework with TEE support, which enables trusted
and collaborative computing in edge-enabled IoT, especially for
large-scale AI model training and inferring in future intelligent
IoT applications and systems.

• We propose two different mechanisms to ensure data transmission
security for dynamic computation offloading. We theoretically
analyze the security of the proposed framework on computa-
tion and communication and evaluate the proposed framework’s
performance.

• A case study is used to show that the framework effectively
improves the performance of large-scale deep learning in a col-
laborative environment.

The remainder of this paper is organized as follows. The designed
trusted and collaborative framework is presented in Section 2, followed
by data transmission security mechanisms in Section 3. Section 4 gives
a short description of framework implementation. In Section 5, we
evaluate the performances of the proposed framework, and a case study
is performed in Section 6, followed by a discussion on security and
scalability in Section 7. Finally, we review related works in Section 8
and conclude this paper in Section 9.

2. Architecture design

In this section, we will introduce the detailed design of the TCFDL
framework, including terminologies, security & threat models, architec-
ture and each components.

2.1. Terminology

We first introduce the terminologies that describe abstraction con-
cepts in TCFDL.

• Function: Inspired by Function as a Service (FaaS), such as AWS
Lambda, OpenFaaS, we also use a similar approach that all exter-
nal services are implemented as functions in TCFDL, and accessed
one service by its function name. For example, a video analytics
application may externally provide a function that accepts video
data and returns vehicle pictures in the video. Internally, the
video analytics application relies on several functions, including
video decoding and vehicle detection. As a result, the framework
can automatically expand the application instance based on the
number of video files to achieve parallel processing.



Computer Networks 193 (2021) 108055Q. Zhang et al.
Fig. 2. The architecture of TCFDL.

• Task: In TCFDL, the request for one function will be a task, and its
data is first transmitted to the framework, while the framework
will offload the task data to a detail function instance. Also,
when one application (function) collaborates with another one
inside framework, it calls the collaborative function through the
framework. Thus, the framework could schedule the task to an
optimal one.

2.2. Security and threat model

First, we assume that the devices, edge nodes, and clouds are honest
but curious. They do not interfere with the execution of applications
and tamper with the data. But they are curious about the applications’
data and always try to learn privacy information from the data. Cor-
respondingly, applications do not fully trust the devices, edge nodes
and clouds, but might trust the part of framework in TEE. In this case,
TEE-based applications will always first validate the TEE part of the
framework to ensure that the framework is trusted.

Based on the above assumptions, we set up two security models. In
the first model, the application fully trusts the TEE and allows its data
to be decrypted in the TEE part of the framework for task scheduling.
In the second model, the application does not fully trust the TEE, and
it does not want its data to be decrypted.

2.3. TCFDL Design

TCFDL is a trusted and collaborative framework for future AI-
enabled IoT environments that enable TEE to preserve data on the
platform in terms of computing and transmission. Fig. 2 present the
architecture of TCFDL. The proposed framework includes three types
of nodes, including Master Node (MNode), Worker Node (WNode), and
client, as well as one centralized service as Service Manager (SMgr),
which does not appear in the figure.

The master node manages all worker nodes in its cluster, and
master nodes and worker nodes could host instances of applications
implementing functions. All functions in a cluster should be registered
to the Service Manager by the master node. In addition, one master
node could serve as not only the master node in its cluster, but also
a work node to its upper cluster, thus expose its inside functions to
the public network through upper clusters, recursively. Moreover, the
user client could query function-related providers through the Service
Manager, then access functions based on TCFDL software development
kit (SDK). Here, we first introduce different nodes and then introduce
the components in these nodes.

2.3.1. Service manager
The Service Manager (SMgr) is usually deployed on a cloud to

provide reliable services and act as a manager in the platform built
by the proposed framework. Through this infrastructure, each clus-
ter’s functions are exposed for access by other clusters and client
nodes. Thus, the SMgr accepts function registering queries, function un-
registering, function inquiring from the master nodes of each cluster
3

in the TCFDL platform, and clients. In addition, the SMgr acts as a
trusted authority (TA) and is responsible for managing the identities,
keys, and credentials of each node and client. Moreover, it also provides
attestation service for TEE applications, including user applications and
the TEE part of TCFDL.

2.3.2. Master node
The master node (MNode) is the manager of the cluster, includ-

ing eight components, and is responsible for coordinating the worker
nodes, application instances, and computational tasks within the clus-
ter. The main functionalities of one master node are concluded as
follows. First, it manages all functions and their instances inside the
cluster, such as function provider registering and unregistering, and
it will auto-scale the number of instances or migrate instances to an
idle worker node. Second, all functions are event-driven, implemented
based on an embedded message queue system. Thus, relationships
between all functions within the local cluster and the underlying mes-
sage queue topics are maintained by the master node, which also
enables dynamic task offloading. Third, there exist two versions of
the security management module in MNode, normal implementation
without TEE support and TEE-enabled implementation. Thus, with
hardware support, the master node starts a TEE proxy for TEE’s special
functionalities, such as authentication, message encryption for dynamic
task offloading, etc. Finally, the cluster where the master node can also
be used as a worker node within a parent cluster, exposing services to
other networks in cases where it is not possible to communicate directly
with other clusters (serving as a gateway).

2.3.3. Worker node
The Worker Node (WNode) mainly acts as a host node for instances

managed by the master node. Therefore, the modules in a worker
node are a subset in the master node, which contains only the security
manager, instance manager, and TEE proxy. Here, the security manager
module only includes the information used by itself, while the one
in the master node store all information in the cluster. The instance
manager module mainly accepts and responds to commands from the
one in the master node. Besides, this module also reports to the master
node on resource usage and status.

2.3.4. Client
By utilizing the provided software development kit, an application

could be developed to access the services registered in the SMgr, where
the application-hosted node is called client. Although our TCFDL is
message-based, several traditional application-level protocols are pro-
vided, such as HyperText Transfer Protocol (HTTP), and the protocol
will be translated in the receiving master node.

2.4. Components

As shown in Fig. 2, a node is structured by several components
based on node type, i.e., MNode, WNode, where MNode consists of
eight components and worker node is with three components.

2.4.1. Function manager
The function manager module exists only in the master node. It

is used to manage the functions in the cluster and keep them up-to-
date with the SMgr. Suppose an instance of an application wants to
provide a function in a cluster. In that case, it needs to register with the
function manager module with related information, such as the name
and configuration of the providing function. Once the function manager
module receives the register information, it first determines the type of
function, and retrieves whether the function with the same name exists
or not. If the function does not exist, it will create the function with
corresponding configurations, such as message routing information for
the message queue module, and task scheduling related information
for the task manager module. Then, it registers the function to the
Service Manager. Thus other applications could access such function by
its information. If the function exists, it only updates local information

about the function.



Computer Networks 193 (2021) 108055Q. Zhang et al.
2.4.2. Task manager
The task manager module monitors the status of each function’s

task in the message queue module, such as the number of tasks, the
response time, and the number of pending tasks, and obtains the
running status of function-related instances from the instance manager
module. Firstly, based on collected information, the task manager
module could dynamically schedule the function tasks according to the
instances’ status, thus implementing load balancing. Secondly, it will
dynamically scale the function’s instances. When the task response time
or the number of pending tasks increases, it can be determined that the
number of instances corresponding to the function cannot handle the
task in time, and then it will send a command to the instance manager
module to launch more instances. When a function has a large number
of idle instances, it will reduce the number of instances. In addition,
to support large-scale AI model inference in TEE, a TEE-enabled pure
AI model inference application will be launched as multiple instances,
and connected by a pipeline, which consists of several message queues
created by the Task Manager module. Therefore, the size of model
inferred by one TEE instance could be limited to avoid out of memory
on TEE hardware.

2.4.3. Instance manager
The instance manager module is designed in both of the MNode

and WNode, which has similar functionality and manages all instances
on the node, such as creating, launching, restarting, or terminating
instances. When a command is received from the task manager module
in the master node, it will launch or terminate the program instance
based on its configuration file. Simultaneously, the instance manager
module collects all instance status, system status, and resource usage,
such as CPU load, on the host node and reports them to the task
manager node on the master node. So that the task manager module
can choose the optimal worker node for the function instance scaling.

2.4.4. Security manager
The security manager module is designed in both of the MNode and

WNode. When a worker node joins the cluster, the security manager
module needs to verify the worker node’s framework version, integrity,
and other security parameters. Thus only legitimate, trustworthy, and
secure worker nodes can join the cluster. Moreover, the security man-
ager module needs to maintain secure channels between the nodes and
verify the security of data and commands, as well as be responsible
for the verification of function binary program files and related con-
figuration files. Furthermore, it enables access control for the message
queue module to protect data from unauthenticated access. In addition,
in nodes that support TEE technology, the security manager module
will run inside TEE, which can protect the security manager module
from most attacks.

2.4.5. Message queue
In our framework, an embedded message queue system (EMQ) is

used to transmit function data as well as status and commands between
the master node and its worker nodes. A message queue system use
queues for messaging, which allows applications to communicate by
sending messages to each other. Typically, a topic is used to implement
publish and subscribe pattern. Once a publisher publishes one message
to the topic, corresponding subscribers will receive the message. Here,
the function is similar to the concept of the topic. Thus, two collabora-
tive applications could be connected by the function. It should be noted
that the embedded message queue system provides communication
channels not only inside one cluster but also between different clusters.
That means one function instance could publish a message to another
instance on a different cluster, and messages are automatically routed
according to their function identities.
4

2.4.6. TEE proxy
The master node and worker node both contain a TEE proxy mod-

ule, which is used to implement functionalities specific to the TEE
technology. First, The integrity and validity of TEE-enabled instances
need to be verified. These instances also can verify the security status
of the hosted framework with the local TEE proxy. A proof will be
provided so that these TEE-enabled instances could attest to each other,
running in different clusters. Once the function is registered, the cluster
will query security-related information from the SMgr (serving as TA
here), such as keys for encrypting data if security communication is
enabled. Later, during data transmission, the TEE proxy will assist the
master node to process the encrypted data, such as decrypting or re-
encrypting. The detailed secure data transmission approaches will be
described in Section 3.

2.4.7. Database
The database module is implemented in the master node to store

data within the cluster, such as information about functions, function
program configuration files, cluster configuration, and framework logs.
In the database module, multiple database systems and the file system
are used. Structured data such as framework logs are stored in the
traditional SQL database. Unstructured data (such as various configu-
ration files) are stored in the file system. In contrast, these files’ storage
locations are stored in the SQL database. A key–value database system
is used to reduce the access latency for these frequently-used data, such
as routing information.

2.4.8. API service
In order to provide a friendly interface, TCFDL also introduces an

API service module for users to configure the function and related pro-
grams. The API service module also provides APIs for the administrator
to configure the cluster.

3. Security Data Transmission in TCFDL

Although TEE provides an isolated environment for function in-
stances, which could protect task data from other applications in run-
time. However, the data might be leaked or tampered with by a curious
or malicious TCFDL node. Encryption and signature are used to deal
with these problems, with the guarantees of data confidentiality and
integrality. For example, the Transport Layer Security (TLS) protocol,
which is currently used in popular Web architectures, obtains the
security certificate of the web service after establishing the transmission
channel, verifies the certificate, and then establishes the encryption
key. Therefore, it requires that the data sender explicitly knows in-
formation such as the identity of the function instance. However, it is
difficult in our scenarios with dynamic task offloading. Therefore, in or-
der to solve the problem of secure data transmission, two approaches to
secure data transmission are designed and implemented in the proposed
framework. The first one is the hop-by-hop secure data transmission,
which uses the traditional TLS approach enhanced by TEE, while the
data needs to be decrypted and encrypted in TEE proxies. The second
one is based on the proxy re-encryption technique, while the data do
not be decrypted in transmission.

3.1. Hop-by-hop symmetrical encryption (HSE)

Fig. 3 illustrates the data transmission flows of our hop-by-hop
symmetrical encryption approach. We assume that the users fully trust
the component TEE proxy of TCFDL, thus they allow their data to be
decrypted in TEE proxy. In the HSE approach, communicating TEE-
enabled entities, including TEE proxies and TEE instances, will firstly
establish symmetrical encryption keys via attestation operation. Then,
the data is encrypted by data providing instance and published to the
local EMQ module. Then the data should be decrypted and re-encrypted

in all passing master nodes by their TEE proxies using the symmetrical



Computer Networks 193 (2021) 108055Q. Zhang et al.
Fig. 3. Data transmission in hop-by-hop symmetrical encryption approach.

Fig. 4. Data transmission in end-to-end asymmetrical encryption approach.

encryption key with the next-hop TEE proxy (like ❷-❸, ❺-❻, ❽-❾,
etc.). Finally, the encrypted data is transmitted to the data processing
instance, and the later one could decrypt it using the encryption key
with the local TEE proxy. In the above processes, all nodes except TEE
proxies have no access to encrypted data.

Similar to Transport Layer Security (TLS), our HSE approach also
utilizes Advanced Encryption Standard (AES) as the underlying sym-
metrical encryption algorithm. Here, a 128-bit key length version AES
is used. It works under the GCM model, which could provide confiden-
tiality and integrality for an encrypted message. In remained parts of
this paper, we label it as AES-128.

3.2. End-to-end asymmetrical encryption (EAE)

Fig. 3 illustrates the data transmission flows of our end-to-end
asymmetrical encryption approach. We assume that the users do not
trust TCFDL including TEE proxy, thus they do not allow their data
to be decrypted in TEE proxy. In this point, the proxy re-encryption
technology is utilized in the EAE approach, in which a proxy (i.e., TEE
proxy in our TCFDL) is with the ability to transform a ciphertext
encrypted under one public key into another ciphertext under another
public key without leaking the underlying messages or private keys.
As shown in Fig. 4, only TEE-enabled instances and their local TEE
proxies process the data, and the data pass through in all passing master
nodes. Here, an extra trusted authority is set for key management. In
our TCFDL, the SMgr will act as the trusted authority. TEE-enabled
instances should first query asymmetrical encryption keys from the TA
on the SMgr. The TA will respond the key and send another key to
its local TEE proxy for data re-encryption (❶). In our implementation,
related application programming interfaces have been provided.

However, traditional asymmetrical encryption algorithms are with
high computing overhead, comparing with symmetrical encryption
algorithms when encrypting the same data. Thus, hybrid encryption
is used here. The function data is encrypted by AES-128 (symmet-
rical encryption), and the AES-128 encryption key is encrypted by
asymmetrical encryption. The used cryptographic operations are as
follows.

Setup: By randomly choosing a 𝑘-bit prime 𝑞 (𝑘 = 160 in our
implementation), an additive cyclic group 𝐺 compose of elliptic curve,
5

where a generator 𝑃 is set for group 𝐺. Thus, the public parameters
consist of {𝑘, 𝑞, 𝑃 , 𝐺}. This algorithm is as a part work of ❶, and should
be performed at the beginning of system start.

KenGen: This operation typically includes three sub-operations trig-
gered by three case: (1) After Setup, the TA will choose a random value
as function encryption key 𝑆𝐾𝑓 = 𝑓 , where 𝑓 ∈ 𝑍∗

𝑞 ; (2) When one
instance 𝑖 registers as data provider, the TA will generates a pair of
keys, including private key 𝑆𝐾𝑖 = 𝑥𝑖 and public key 𝑃𝐾𝑖 = 𝑥𝑖𝑃 , where
𝑥𝑖 ∈ 𝑍∗

𝑞 , Then, the TA calculates re-encryption key 𝑅𝐾𝑖→𝑓 = 𝑆𝐾𝑓
𝑆𝐾𝑖

= 𝑓
𝑥𝑖

.
Finally, the TA will respond to the instance and its local TEE proxy with
{𝑘, 𝑞, 𝑃 , 𝐺, 𝑆𝐾𝑖, 𝑃𝐾𝑖} and {𝑘, 𝑞, 𝑃 , 𝐺,𝑅𝐾𝑖→𝑓 }, respectively, as shown in
❶; and (3) When one instance 𝑗 registers as data processor, the TA will
generate a pair of keys, 𝑆𝐾𝑗 and 𝑃𝐾𝑗 as before. Then, the TA calculates
re-encryption key 𝑅𝐾𝑓→𝑓 , and sends these keys to the instance and its
local TEE proxy along with system parameters.

Enc: This algorithm is used by data providing instances to encrypt
function data. When one instance 𝑖 sends one function data 𝑀 , it must
encrypt the data using symmetrical encryption algorithm (i.e., AES-
128), where the encryption key is 𝐾𝑒𝑦. Then, the encryption key is
encrypted as two parts {𝐸𝐾𝑖,1, 𝐸𝐾𝑖,2}:

𝐸𝐾𝑖,1 = (𝐾𝑒𝑦∥𝑃𝑎𝑑𝑑𝑖𝑛𝑔)⊕ 𝑟𝑃 (1)

𝐸𝐾𝑖,2 = 𝑟𝑆𝐾𝑖𝑃 = 𝑟𝑥𝑖𝑃 (2)

where 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 is a random binary string to pad 𝐾𝑒𝑦 to the same length
with 𝑟𝑃 , and 𝑟 is a random value. Finally, the instance could publish
function data with new form of {𝐸𝐾𝑖,1, 𝐸𝐾𝑖,2, 𝐴𝐸𝑆𝐸𝑛𝑐𝐾𝑒𝑦(𝑀)} in the
process ❷.

ReEnc: When a TEE proxy receives a function data encrypted by
Enc or forwards data to a local TEE instance, it should use ReEnc
to transform encrypted encryption key under one key to another key,
using the key of 𝑅𝐾𝑖→𝑓 in ❸-❹ or 𝑅𝐾𝑓→𝑗 in ❻-❼. Here we take the
calculation of re-encrypting using 𝑅𝐾𝑖→𝑗 as an example.

𝐸𝐾𝑗,1 = 𝐸𝐾𝑖,1 = (𝐾𝑒𝑦∥𝑃𝑎𝑑𝑑𝑖𝑛𝑔)⊕ 𝑟𝑃 (3)

𝐸𝐾𝑗,2 = 𝐸𝐾𝑖,2𝑅𝐾𝑖→𝑗 = 𝑟𝑥𝑗𝑃 (4)

Dec: This algorithm is used by TEE instances to decrypt func-
tion data. When a TEE instance 𝑗 receives data of {𝐸𝐾𝑗, 1, 𝐸𝐾𝑗,2,
𝐴𝐸𝑆𝐸𝑛𝑐(𝑀)} (in ❽), it first figures out symmetrical encryption key
by calculating as follows:

𝐾𝑒𝑦∥𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = 𝐸𝐾𝑗,𝑖 ⊕ (𝐸𝐾𝑗,2𝑆𝐾
−1
𝑗 ) (5)

Then, it could obtain plaintext function data from 𝐴𝐸𝑆𝐸𝑛𝑐𝐾𝑒𝑦(𝑀)
using encryption key 𝐾𝑒𝑦.

4. Prototype implementation

In this section, we will introduce the implementation of a proto-
type based on our design. We implement a prototype of TCFDL using
Golang language and C/C++ language, with a set of open sources,
e.g., NATS [31], NATS Streaming [32], Redis [33] and FastHTTP [34],
where C/C++ language is only used to implement TEE proxy compo-
nent and TEE manager component. For TEE, we utilize Intel SGX to
implement. The TEE-related components are implemented using Intel
SGX SDK 2.7.

In our implementation, we mainly built an overlay on top of NATS
Streaming and NATS to enable communication with the dynamic task
offloading support. The inside client is implemented to manage all
topics in TCFDL. It provides a topic for out-cluster function requester by
aggregate related in-cluster topics. Here, two communication patterns
are provided. The first one is a traditional publish/subscribe pattern
built on top of NATS Streaming with a message acknowledging, thus
reliable one-to-many communication is enabled. The second one is the
request/reply pattern built on top of NATS without message acknowl-
edging. The instance could publish a request to function, and only one
function instance will receive and respond to this request. Thus, the
later one also could be to utilize several traditional network protocol,
such as HTTP.



Computer Networks 193 (2021) 108055Q. Zhang et al.
Fig. 5. Experimental topologies.

5. Performance evaluation

In this section, we first introduce the experiment setup, followed
by the performance evaluation. Then, a case study is performed to
demonstrate collaboration in a dynamic CAV environment.

5.1. Experiment setup

To evaluate the performance of TCFDL, we set up three cases, as
shown in Fig. 5. In the first case, two collaborative applications are
hosted in the master of one cluster. In the second case, one of the
applications is hosted in the master of one cluster, and another one
is hosted in one worker node of the same cluster. In the last case,
two applications are hosted in the master of two different clusters,
respectively.

We set up a testbed with four desktops for these three cases, while
all desktops are with an Intel Core i5-7400 running in performance
mode at 3.0 GHz, and 4 GB memory. All the desktops are connected
via the same switch, and the desktop as the Service Manager also
provides time synchronization service. It should be noted that the data
transmission latency for small volume is lower than the time error of
two different desktops. Therefore, even though we have measured the
transmission latency, it is not shown in the experimental results. All
experiments are repeated 1000 times.

For secure data transmission, the symmetric cryptography used is
Advanced Encryption Standard (AES) algorithm with a 128-bit security
level and Galois/Counter Mode (GCM). The elliptic curve used in the
experiments is the NIST Curve P-256, which also provides 128-bit
security.

5.2. Communication

Fig. 6 shows data transmission performance for task offloading in
three cases. Note that we just measure the data transmission latency
here. It does not matter whether the data is encrypted or not. Due to
the reason we mentioned in the experiment setup, we only present the
performance of the Case 1 while the size of transmitted data is less
than 128 KB. The results here are as expected. The latency of data
transmission increases as the number of data increases, and Case 3 has
the highest latency since the data has to be forwarded by two masters.
6

Fig. 6. Data transmission latency with different data size in difference cases.

In our implementation, the difference between Case 1 and Case 2
is that task data have a cross-node communication, and the difference
between Case 2 and Case 3 is that task data need to be forward two
more times in local and remote collaborative master nodes. It means
that the overhead caused by TCFDL is around 55 ms for the 4 MB data,
and it only happens in cross-cluster collaborative. For the collaboration
between applications in the same cluster, no overhead happens. In addi-
tion, it should be noted that cross-node communication in experiments
actually does not consume much time, thus appearing to be a high
additional overhead for our framework. Actually, cross-cluster commu-
nication latency is several times higher than the additional overhead of
the framework. For example, as the study in [35], transmitting 4 MB
data causes around 2.3 s and 4.4 s, respectively, for cloud servers 200
miles and 450 miles away.

5.3. Secure communication for dynamic task offloading

To measure the performance of secure data communication in
TCFDL, we perform the experiment under Case 3. As mentioned in
Section 3, transmitted task data is processed by the TEE proxy in
TCFDL. In the HSE scheme, the data is decrypted and then encrypted
by the TEE proxy with the remote TEE proxy’s AES key. Therefore,
the data will be three times of symmetric encryption, as well as three
times of symmetric decryption. In the PRE scheme, hybrid encryption is
applied that only the AES key will be re-encrypted. Therefore, only one
symmetric encryption and one symmetric decryption, plus two times
of asymmetric encryption, are applied. The experimental results are
shown in Fig. 7.

From Fig. 7, it can be seen that the transmission latency is higher
than the one without security schemes. The reason is that the data
needs to be processed by TEE proxies before it is published to the
framework. Among two secure data transmission schemes, the PRE
scheme performs better due to lower computational overhead, which
only uses one multiplication on the elliptic curve and avoids data
encryption/decryption on TEE proxy. In addition, the computational
overhead of the HSE scheme increase as the data size increases. For



Computer Networks 193 (2021) 108055Q. Zhang et al.
Fig. 7. Latency for data transmission and data encryption.

example, they are 30 μs with 1 KB data and 490 μs with 256 KB data,
respectively. However, the computation overhead is fixed to 200 μs.

6. Case study

In this section, we take the collaboration in the CAV scenario as
a case study to demonstrate the functionality of TCFDL. One goal and
contribution of TCFDL is that it supports large-scale AI model inference
in TEE utilizing collaboration. As shown in Fig. 8, the framework in
one CAV could offload tasks to the frameworks in the base station and
other collaborative CAVs. All data is encrypted using the EAE approach
to ensure the security of data transmission.

In the experiment, we set up two desktops as two CAVs, and two
cases of base stations: (1) limited computing resources, which only
consists of one desktop; and (2) non-limited computing resources,
which has four desktops. All desktops have the same hardware as
the previous experiments. To enable deep learning in TEE, we use
Anakin as the underlying deep learning framework. In order to simulate
future large-scale model inference in IoTs, we extend a popular model,
MobileNet, by repeating part of layers, to 20x large, the number of
parameters of which is still less than VGG16 model. The modified
model is partitioned so that they could run on different nodes to
simulate a collaboration, including CAVs and servers in the base station.
In the limited computing resource case, the model offloaded to the
base station cannot be partitioned again. It is because only one desktop
in the cluster, which means the base station cannot scale more TEE
instances in the cluster. In the non-limited computing resource case,
the model offloaded to the base station will be partitioned into 4 parts
inferred in four TEE instances scaled by TCFDL on 4 desktop, to make
sure the partitioned model will not lead to a page-switching in Intel
SGX with low performance.

Fig. 9 illustrates the response time in collaboration. The 𝑥-axis refers
to the times of the model running in the CAV compared to the original
MobileNet. The 𝑦-axis refers to the latency of obtaining the inference
result from collaborative nodes. Besides, the latency of inferring such
a model in the CAV is also shown in the figure, labeled as Initiator.
The results show that collaboration could reduce latency. In addition,
with the non-limited computing resources in the base station, the base
station could partition and offload sub-models to its local worker nodes,
which does not lead to a slowdown in computing. However, when the
model offloaded to the edge servers is only with 5x MobileNet, the
latencies are similar. It is because the offloaded model will not be
partitioned in both the limited case and non-limited case.

7. Discussion

In this section, we will discuss the security of TCFDL, in terms
of computation security and data transmission security, as well as
overhead and limitations of TCFDL.
7

Fig. 8. A collaborative scenario for CAVs.

Fig. 9. Latency in collaboration with different edge servers.

7.1. Security

Computation Security. TEE technology’s security properties can
guarantee the computational security of a function instance. The user
function program can also verify the security of the framework through
local attestation and obtain a certificate to prove its own security. Thus,
collaborative function instances can attest to each other via certificate
verifying. Finally, a trusted collaboration can be established, supported
by TEE.

Transmission Security. To secure data in transmission, two ap-
proaches are proposed in this paper. In the HSE scheme, the data will be
decrypted in the TEE proxy, which could be verified to keep confiden-
tial information such as plaintext and decryption keys are not accessible
to the framework. To this end, data security in the transmission is
guaranteed under the first security model. In the EVE scheme, the data
is not decrypted on the TEE proxy, but is directly re-encrypted. Also,
the re-encryption key cannot be used to decrypt the data, which has
been proved by [36]. Thus, the EVE scheme can be secured under both
the first and the second security models. In addition, the EVE scheme
can guarantee security without the TEE proxy, while the message queue
module can execute its re-encryption operation.

7.2. Limitations and future work

Message based Communication. In our TCFDL, all communication
is message-based. On the one hand, this messaging paradigm is already
used in many traditional IoT systems, e.g., message queuing telemetry
transport based IoT applications and systems. On the other hand, it is
also used in existing FaaS platforms, such as OpenFaaS. We verify the
feasibility of message-based collaborative computation in IoTs through
a case study based on the implemented prototype.



Computer Networks 193 (2021) 108055Q. Zhang et al.
However, the experiments show that our framework has a high addi-
tional overhead for across-cluster communication. Actually, to keep the
maintainability and extensibility of our framework, we do not modify
the underlying message queue system and implement our message
queue module imitating the implementation of NATS Streaming, which
also uses a NATS client to implement reliable transmission. Thus,
we use a NATS Streaming client to handle messages in Pub/Sub and
a NATS client to forward Request/Reply messages. To improve the
performance of TCFDL, we will modify the message queuing module
to avoid such forwarding.

Scalability. The TCFDL framework could scale instances by moni-
toring the length of unprocessed message queue, and launch an new
instance in a WNode that have enough resource. However, in our
implementation, multiple TEE instances cannot be scheduled in the
same WNode to avoid out-of-memory TEE hardware. It is because the
memory usage and performance relationships of TEE instances vary
across hardware implementations, i.e., ARM TrustZone and Intel SGX.

Therefore, as future work, we intend to first incorporate the usage
of TEE hardware into the monitoring metrics, and then explore the
memory-performance relationship to propose corresponding scheduling
algorithms to ensure the efficiency of TEE hardware usage within the
cluster.

8. Related works

8.1. Edge collaborative framework

In the field of edge computing, a number of frameworks have been
proposed [37–39]. Satyanarayanan et al. [37] proposed Cloudlet as an
early framework supporting edge computing. The servers located at
the edge of the network provide the runtime of virtual machines, so
that computing tasks can be offloaded to these edge servers. Amento
et al. [40] proposed FocusStack, a location-aware hybrid edge-cloud
system that provides the ability to extend computation to various edge
devices (e.g., drones, vehicles). Mortazavi et al. [41] proposed the
CloudPath computing platform, which enables one task processed on
the nodes from devices to the cloud. Zhang et al. [13] proposed an
edge-cloud collaborative framework, Firework, and Zhang et al. [38]
implemented a collaborative edge video analytics application, AMBER
Alert Assistant, based on the Firework framework. Wang et al. [42]
proposed MobileEdge, an in-vehicle collaborative computing platform
that can migrate applications based on OpenCL kernels and Tensorflow
models and then offload task data to process. Although it is proposed
to deal with the collaborative computing problem in CAVs, it also
can be extended to the edge-cloud collaborative environment. How-
ever, the above frameworks aim to deal with the basic problem of
collaborative computing. They cannot provide a trusted environment
for collaborative computing and dynamical task offloading with secure
data transmission.

Some frameworks in the industry can also support collaborative
computing in an edge-cloud environment. For example, Kubernetes
[43], a well-known container orchestrator, has also released a
lightweight version, KubeEdge, for edge computing. In addition, AWS
Greengrass [44] and Apache Edgeent are also introduced as platforms
supporting edge computing. However, these industry frameworks only
provide the collaboration between devices and one or several fixed
edge/cloud nodes, thus cannot provide a flexible collaboration at the
edge.

8.2. TEE-enabled framework

With the introduction of the Trusted Execution Environment tech-
nology, the concept of confidential computing was introduced. Data
can be secured in an absolutely trusted environment, and the data is
handled explicitly without the fear of other applications being informed
of the computation. At the same time, some TEE-enhanced computing
8

systems and platforms were proposed. However, they only provide col-
laboration between two nodes. SecureStreams [45] utilizes Lua script
to process streaming data in TEE. Based on the migration of Lua scripts,
the applications could be migrated. In addition, it also provides an
end-to-end secure data transmission. However, as mentioned before,
it only provides a collaboration between two nodes, and also cannot
support dynamic task offloading in a mobile environment. Similarly,
StreamBox-TZ [26] also cannot provides a flexible collaboration.

Considering the edge computing environment, Vaucher et al. [46]
designed a container scheduling plug-in for the KubeEdge scheduler
that supports the use of SGX devices, monitors container usage of Intel
SGX devices, and implements different scheduling algorithms. How-
ever, like the KubeEdge scheduler, it does not support collaborative
computing and secure data communication mechanisms.

9. Conclusion

In this paper, we have investigated providing collaborative com-
puting with security supports in a dynamic environment, in terms of
computation and data transmission, for future AI-enabled IoTs. As a re-
sult, we proposed and implemented a trusted collaborative framework
enhanced by hardware-assistant trusted execution environment tech-
nology. The proposed framework enables the collaboration between IoT
devices, edge nodes, and clouds, and supports dynamic task offloading
for mobile environments, such as connected and autonomous vehicles.
In addition, to secure data in dynamic task offloading, we proposed
two secure data transmission approaches in the framework. We im-
plemented a prototype for the proposed framework and evaluated the
performance. The experiment results show that our framework provides
flexible and dynamic collaboration with low overhead. The case study
of the collaboration in CAVs demonstrates that the framework can
effectively support collaborative edge intelligence for future AI-enabled
IoTs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work was supported by the National Natural Science Foun-
dation of China (No. 61872001, No. 6191101332, No. U1936220),
the Open Fund of Key Laboratory of Embedded System and Service
Computing (Tongji University), Ministry of Education, China (No.
ESSCKF2018-03), the Open Fund for Discipline Construction, Institute
of Physical Science and Information Technology, Anhui University,
China and the Excellent Talent Project of Anhui University, China. The
authors are very grateful to the anonymous referees for their detailed
comments and suggestions regarding this paper.

References

[1] Q. Zhang, H. Sun, X. Wu, H. Zhong, Edge video analytics for public safety:
A review, Proc. IEEE 107 (8) (2019) 1675–1696, http://dx.doi.org/10.1109/
JPROC.2019.2925910, https://ieeexplore.ieee.org/document/8781894/.

[2] H. Li, K. Ota, M. Dong, Learning IoT in edge: Deep learning for the internet of
things with edge computing, IEEE Netw. 32 (1) (2018) 96–101, http://dx.doi.
org/10.1109/MNET.2018.1700202.

[3] Ericsson, Ericsson mobility report, 2020, https://www.ericsson.com/4adc87/
assets/local/mobility-report/documents/2020/november-2020-ericsson-
mobility-report.pdf.

[4] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT
big data and streaming analytics: A survey, IEEE Commun. Surv. Tutor. 20 (4)
(2018) 2923–2960, http://dx.doi.org/10.1109/COMST.2018.2844341.

http://dx.doi.org/10.1109/JPROC.2019.2925910
http://dx.doi.org/10.1109/JPROC.2019.2925910
http://dx.doi.org/10.1109/JPROC.2019.2925910
https://ieeexplore.ieee.org/document/8781894/
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/MNET.2018.1700202
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
http://dx.doi.org/10.1109/COMST.2018.2844341


Computer Networks 193 (2021) 108055Q. Zhang et al.
[5] J. Wang, J. Hu, G. Min, A.Y. Zomaya, N. Georgalas, Fast adaptive task offloading
in edge computing based on meta reinforcement learning, IEEE Trans. Parallel
Distrib. Syst. 32 (1) (2021) 242–253, http://dx.doi.org/10.1109/TPDS.2020.
3014896.

[6] N. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, D.I. Kim,
Applications of deep reinforcement learning in communications and networking:
A survey, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3133–3174, http://dx.doi.
org/10.1109/COMST.2019.2916583.

[7] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, J.P. Jue, All one needs to know about fog computing and related
edge computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–
330, http://dx.doi.org/10.1016/j.sysarc.2019.02.009, http://www.sciencedirect.
com/science/article/pii/S1383762118306349.

[8] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, W. Shi, Computing systems
for autonomous driving: State-of-the-art and challenges, IEEE Internet Things J.
(2020) 1, http://dx.doi.org/10.1109/JIOT.2020.3043716.

[9] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, A survey of deep learning
techniques for autonomous driving, J. Field Robotics 37 (3) (2020) 362–386.

[10] A.E. Sallab, M. Abdou, E. Perot, S. Yogamani, End-to-end deep reinforcement
learning for lane keeping assist, 2016, arXiv:1612.04340.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646, http://dx.doi.org/10.1109/JIOT.
2016.2579198.

[12] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang, H. Jin, Y.
Yang, A game-theoretical approach for mitigatingedge ddos attack, IEEE Trans.
Dependable Secure Comput. (2021) 1, http://dx.doi.org/10.1109/TDSC.2021.
3055559.

[13] Q. Zhang, Q. Zhang, W. Shi, H. Zhong, Firework: Data processing and sharing
for hybrid cloud-edge analytics, IEEE Trans. Parallel Distrib. Syst. 29 (9) (2018)
2004–2017, http://dx.doi.org/10.1109/TPDS.2018.2812177, https://ieeexplore.
ieee.org/document/8306827/.

[14] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, N. Georgalas, Computation offloading in
multi-access edge computing using a deep sequential model based on reinforce-
ment learning, IEEE Commun. Mag. 57 (5) (2019) 64–69, http://dx.doi.org/10.
1109/MCOM.2019.1800971.

[15] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, Y. Yang, Auditing cache data integrity
in the edge computing environment, IEEE Trans. Parallel Distrib. Syst. 32 (5)
(2021) 1210–1223, http://dx.doi.org/10.1109/TPDS.2020.3043755.

[16] Q. Zhang, Z. Yu, W. Shi, H. Zhong, Demo abstract: EVAPS: Edge video
analysis for public safety, in: Proceedings - 1st IEEE/ACM Symposium on Edge
Computing, SEC 2016, IEEE, 2016, pp. 121–122, http://dx.doi.org/10.1109/SEC.
2016.30, http://ieeexplore.ieee.org/document/7774697/.

[17] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravin-
dranath, S. Sinha, Real-time video analytics: The killer app for edge computing,
Computer 50 (10) (2017) 58–67, http://dx.doi.org/10.1109/MC.2017.3641638.

[18] J. Xu, D. Zhang, L. Liu, X. Li, Dynamic authentication for cross-realm SOA-
based business processes, IEEE Trans. Serv. Comput. 5 (1) (2012) 20–32, http:
//dx.doi.org/10.1109/TSC.2010.33.

[19] F. Ahmad, F. Kurugollu, C.A. Kerrache, S. Sezer, L. Liu, NOTRINO: a novel hybrid
trust management scheme for internet-of-vehicles, IEEE Trans. Veh. Technol.
(2021) 1, http://dx.doi.org/10.1109/TVT.2021.3049189.

[20] J. Cui, F. Wang, Q. Zhang, Y. Xu, H. Zhong, An anonymous message authen-
tication scheme for semi-trusted edge-enabled iIoT, IEEE Trans. Ind. Electron.
(2020) 1, http://dx.doi.org/10.1109/TIE.2020.3039227.

[21] M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption be prac-
tical? in: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, in: CCSW ’11, Association for Computing Machinery, New York, NY,
USA, 2011, pp. 113–124, http://dx.doi.org/10.1145/2046660.2046682, https:
//doi.org/10.1145/2046660.2046682.

[22] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, I. Verbauwhede, FPGA-based
high-performance parallel architecture for homomorphic computing on encrypted
data, in: 2019 IEEE International Symposium on High Performance Computer
Architecture, HPCA, 2019, pp. 387–398. http://dx.doi.org/10.1109/HPCA.2019.
00052.

[23] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, J. Wernsing, Cryp-
tonets: Applying neural networks to encrypted data with high throughput and
accuracy, in: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Vol. 48, in: ICML’16, JMLR.org, 2016, pp.
201–210.

[24] M. Sabt, M. Achemlal, A. Bouabdallah, Trusted execution environment: what it
is, and what it is not, in: 2015 IEEE Trustcom/BigDataSE/ISPA, 1, IEEE, 2015,
pp. 57–64.

[25] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd,
C. Rozas, Intel® software guard extensions (intel® SGX) support for dynamic
memory management inside an enclave, in: Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016, in: HASP 2016, Association
9

for Computing Machinery, New York, NY, USA, 2016, https://doi.org/10.1145/
2948618.2954331.

[26] H. Park, S. Zhai, L. Lu, F.X. Lin, Streambox-TZ: Secure stream analytics at the
edge with trustzone, in: 2019 USENIX Annual Technical Conference (USENIX
ATC 19), USENIX Association, Renton, WA, 2019, pp. 537–554, https://www.
usenix.org/conference/atc19/presentation/park-heejin.

[27] Google, Introducing asylo: an open source framework for confidential comput-
ing, 2020, https://cloud.google.com/blog/products/gcp/introducing-asylo-an-
open-source-framework-for-confidential-computing.

[28] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, S. Yan, Occlum:
Secure and efficient multitasking inside a single enclave of intel SGX, in: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, in: ASPLOS ’20, Association
for Computing Machinery, New York, NY, USA, 2020, pp. 955–970, http://dx.
doi.org/10.1145/3373376.3378469, https://doi.org/10.1145/3373376.3378469.

[29] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, H. Zhong, Openvdap: An
open vehicular data analytics platform for CAVs, in: Proceedings - International
Conference on Distributed Computing Systems, 2018-July, IEEE, 2018, pp. 1310–
1320, http://dx.doi.org/10.1109/ICDCS.2018.00131, https://ieeexplore.ieee.org/
document/8416394/.

[30] Connected cars autonomous vehicles survey, 2018, https://www.foley.com/files/
uploads/2017-Connected-Cars-Survey-Report.pdf. (Accessed 2018).

[31] NATS, NATS - open source messaging system, 2017, https://nats.io/.
[32] NATS, NATS streaming server, 2020, https://github.com/nats-io/nats-streaming-

server.
[33] Redis Labs, Redis, 2020, https://redis.io/.
[34] A. Valialkin, Fast HTTP implementation for Go, 2020, https://github.com/

valyala/fasthttp.
[35] Q. Zhang, H. Zhong, J. Wu, W. Shi, How edge computing and initial congestion

window affect latency of web-based services: Early experiences with baidu? in:
Proceedings - 2018 3rd ACM/IEEE Symposium on Edge Computing, SEC 2018,
IEEE, 2018, pp. 393–398, http://dx.doi.org/10.1109/SEC.2018.00052, https://
ieeexplore.ieee.org/document/8567697/.

[36] M. Blaze, G. Bleumer, M. Strauss, Divertible protocols and atomic proxy
cryptography, in: K. Nyberg (Ed.), Advances in Cryptology — EUROCRYPT’98,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 127–144.

[37] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for VM-based
cloudlets in mobile computing, IEEE Perv. Comput. 8 (4) (2009) 14–23.

[38] Q. Zhang, Q. Zhang, W. Shi, H. Zhong, Distributed collaborative execution on
the edges and its application to AMBER alerts, IEEE Internet Things J. 5 (5)
(2018) 3580–3593, http://dx.doi.org/10.1109/JIOT.2018.2845898.

[39] L. Yuan, Q. He, S. Tan, L. Bo, Y. Jiangshan, F. Chen, H. Jin, Y. Yang, Coopedge:
A decentralized blockchain-based platform for cooperative edge computing,
in: Proceedings of the Web Conference 2021, in: WWW ’21, Association for
Computing Machinery, New York, NY, USA, 2021, http://dx.doi.org/10.1145/
3442381.3449994, https://doi.org/10.1145/3442381.3449994.

[40] B. Amento, B. Balasubramanian, R.J. Hall, K. Joshi, G. Jung, K.H. Purdy,
Focusstack: Orchestrating edge clouds using location-based focus of attention,
in: Proceedings - 1st IEEE/ACM Symposium on Edge Computing, SEC 2016,
Institute of Electrical and Electronics Engineers Inc., 2016, pp. 179–191, http:
//dx.doi.org/10.1109/SEC.2016.22.

[41] S.H. Mortazavi, M. Salehe, C.S. Gomes, C. Phillips, E. De Lara, Cloudpath: A
multi-tier cloud computing framework, in: 2017 2nd ACM/IEEE Symposium on
Edge Computing, SEC 2017, Association for Computing Machinery, Inc, New
York, NY, USA, 2017, pp. 1–13, http://dx.doi.org/10.1145/3132211.3134464,
https://dl.acm.org/doi/10.1145/3132211.3134464.

[42] L. Wang, Q. Zhang, Y. Li, H. Zhong, W. Shi, MobileEdge: enhancing on-board
vehicle computing units using mobile edges for CAVs, in: 2019 IEEE 25th
International Conference on Parallel and Distributed Systems (ICPADS), 2019,
pp. 470–479.

[43] D. Bernstein, Containers and cloud: From lxc to docker to kubernetes, IEEE Cloud
Comput. 1 (3) (2014) 81–84.

[44] Amazon, AWS greengrass, 2020, https://docs.aws.amazon.com/greengrass/
latest/developerguide/what-is-gg.html.

[45] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy, V. Schiavoni, Securestreams:
A reactive middleware framework for secure data stream processing, in: DEBS
2017 - Proceedings of the 11th ACM International Conference on Distributed
Event-Based Systems, Association for Computing Machinery, Inc, New York, New
York, USA, 2017, pp. 124–133, http://dx.doi.org/10.1145/3093742.3093927,
http://dl.acm.org/citation.cfm?doid=3093742.3093927.

[46] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, C. Fetzer, SGX-aware
container orchestration for heterogeneous clusters, in: Proceedings - International
Conference on Distributed Computing Systems, 2018-July, Institute of Electrical
and Electronics Engineers Inc., 2018, pp. 730–741, http://dx.doi.org/10.1109/
ICDCS.2018.00076.

http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://www.sciencedirect.com/science/article/pii/S1383762118306349
http://www.sciencedirect.com/science/article/pii/S1383762118306349
http://www.sciencedirect.com/science/article/pii/S1383762118306349
http://dx.doi.org/10.1109/JIOT.2020.3043716
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb9
http://arxiv.org/abs/1612.04340
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/TDSC.2021.3055559
http://dx.doi.org/10.1109/TDSC.2021.3055559
http://dx.doi.org/10.1109/TDSC.2021.3055559
http://dx.doi.org/10.1109/TPDS.2018.2812177
https://ieeexplore.ieee.org/document/8306827/
https://ieeexplore.ieee.org/document/8306827/
https://ieeexplore.ieee.org/document/8306827/
http://dx.doi.org/10.1109/MCOM.2019.1800971
http://dx.doi.org/10.1109/MCOM.2019.1800971
http://dx.doi.org/10.1109/MCOM.2019.1800971
http://dx.doi.org/10.1109/TPDS.2020.3043755
http://dx.doi.org/10.1109/SEC.2016.30
http://dx.doi.org/10.1109/SEC.2016.30
http://dx.doi.org/10.1109/SEC.2016.30
http://ieeexplore.ieee.org/document/7774697/
http://dx.doi.org/10.1109/MC.2017.3641638
http://dx.doi.org/10.1109/TSC.2010.33
http://dx.doi.org/10.1109/TSC.2010.33
http://dx.doi.org/10.1109/TSC.2010.33
http://dx.doi.org/10.1109/TVT.2021.3049189
http://dx.doi.org/10.1109/TIE.2020.3039227
http://dx.doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
http://dx.doi.org/10.1109/HPCA.2019.00052
http://dx.doi.org/10.1109/HPCA.2019.00052
http://dx.doi.org/10.1109/HPCA.2019.00052
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb24
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb24
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb24
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb24
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb24
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://cloud.google.com/blog/products/gcp/introducing-asylo-an-open-source-framework-for-confidential-computing
https://cloud.google.com/blog/products/gcp/introducing-asylo-an-open-source-framework-for-confidential-computing
https://cloud.google.com/blog/products/gcp/introducing-asylo-an-open-source-framework-for-confidential-computing
http://dx.doi.org/10.1145/3373376.3378469
http://dx.doi.org/10.1145/3373376.3378469
http://dx.doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3373376.3378469
http://dx.doi.org/10.1109/ICDCS.2018.00131
https://ieeexplore.ieee.org/document/8416394/
https://ieeexplore.ieee.org/document/8416394/
https://ieeexplore.ieee.org/document/8416394/
https://www.foley.com/files/uploads/2017-Connected-Cars-Survey-Report.pdf
https://www.foley.com/files/uploads/2017-Connected-Cars-Survey-Report.pdf
https://www.foley.com/files/uploads/2017-Connected-Cars-Survey-Report.pdf
https://nats.io/
https://github.com/nats-io/nats-streaming-server
https://github.com/nats-io/nats-streaming-server
https://github.com/nats-io/nats-streaming-server
https://redis.io/
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
http://dx.doi.org/10.1109/SEC.2018.00052
https://ieeexplore.ieee.org/document/8567697/
https://ieeexplore.ieee.org/document/8567697/
https://ieeexplore.ieee.org/document/8567697/
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb37
http://dx.doi.org/10.1109/JIOT.2018.2845898
http://dx.doi.org/10.1145/3442381.3449994
http://dx.doi.org/10.1145/3442381.3449994
http://dx.doi.org/10.1145/3442381.3449994
https://doi.org/10.1145/3442381.3449994
http://dx.doi.org/10.1109/SEC.2016.22
http://dx.doi.org/10.1109/SEC.2016.22
http://dx.doi.org/10.1109/SEC.2016.22
http://dx.doi.org/10.1145/3132211.3134464
https://dl.acm.org/doi/10.1145/3132211.3134464
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00152-3/sb43
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
http://dx.doi.org/10.1145/3093742.3093927
http://dl.acm.org/citation.cfm?doid=3093742.3093927
http://dx.doi.org/10.1109/ICDCS.2018.00076
http://dx.doi.org/10.1109/ICDCS.2018.00076
http://dx.doi.org/10.1109/ICDCS.2018.00076


Computer Networks 193 (2021) 108055Q. Zhang et al.
Qingyang Zhang received the B. Eng. degree in computer
science and technology from Anhui University, China in
2014, where he is currently pursuing the Ph.D. candidate.
His research interest includes edge computing, computer
systems, and security.

Hong Zhong was born in Anhui Province, China, in 1965.
She received her Ph.D. degree in computer science from
University of Science and Technology of China in 2005.
She is currently a professor and Ph.D. supervisor of the
School of Computer Science and Technology at Anhui Uni-
versity. Her research interests include applied cryptography,
IoT security, vehicular ad hoc network, cloud computing
security and software-defined networking (SDN). She has
over 120 scientific publications in reputable journals (e.g.
IEEE Transactions on Dependable and Secure Computing,
IEEE Transactions on Information Forensics and Security,
IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Vehicular Technology, IEEE Transactions
on Intelligent Transportation Systems, IEEE Transactions on
Network and Service Management, IEEE Transactions on Big
Data and IEEE Internet of Things Journal), academic books
and international conferences.
10
Weisong Shi is a Charles H. Gershenson Distinguished
Faculty Fellow and a professor of Computer Science at
Wayne State University. His research interests include Edge
Computing, Computer Systems, energy-efficiency, and wire-
less health. He received his BS from Xidian University in
1995, and Ph.D. from Chinese Academy of Sciences in
2000, both in Computer Engineering. He is a recipient of
National Outstanding Ph.D. dissertation award of China and
the NSF CAREER award. He is an IEEE Fellow and ACM
Distinguished Scientist.

Lu Liu is the Professor of Informatics and Head of School
of Informatics in the University of Leicester, UK. Prof Liu
received the Ph.D. degree from University of Surrey, UK
and M.Sc. in Data Communication Systems from Brunel
University, UK. Prof Liu’s research interests are in areas
of cloud computing, service computing, computer networks
and peer-to-peer networking. He is a Fellow of British
Computer Society (BCS).


	A trusted and collaborative framework for deep learning in IoT
	Introduction
	Motivating application
	Challenges
	Our contribution

	Architecture design
	Terminology
	Security and threat model
	TCFDL Design
	Service manager 
	Master node
	Worker node
	Client

	Components
	Function manager
	Task manager
	Instance manager
	Security manager
	Message queue
	TEE proxy
	Database
	API service


	Security Data Transmission in TCFDL
	Hop-by-hop symmetrical encryption (HSE)
	End-to-end asymmetrical encryption (EAE)

	Prototype implementation
	Performance evaluation
	Experiment setup
	Communication
	Secure communication for dynamic task offloading

	Case study
	Discussion
	Security
	Limitations and future work

	Related works
	Edge collaborative framework
	TEE-enabled framework

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


