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ABSTRACT | With the installation of enormous public safety

and transportation infrastructure cameras, video analytics has

come to play an essential part in public safety. Typically, video

analytics is to collectively leverage the advanced computer

vision (CV) and artificial intelligence (AI) to solve the four-W

problem. That is to identify Who has done something (What)

at a specific place (Where) at some time (When). According

to the difference of latency requirements, video analytics can

be applied to postevent retrospective analysis, such as archive

management, search, forensic investigation and real-time live

video stream analysis, such as situation awareness, alerting,

and interested object (criminal suspect/missing vehicle) detec-

tion. The latter is characterized as having higher requirements

on hardware resources as the sophisticated image processing

algorithms under the hood. However, analyzing large-scale

live video streams on the Cloud is impractical as the edge

solution that conducts the video analytics on (or close to) the

camera provides a silvering light. Analyzing live video streams

on the edge is not trivial due to the constrained hardware

resources on edge. The AI-dominated video analytics requires

higher bandwidth, consumes considerable CPU/GPU resources

for processing, and demands larger memory for caching. In this

paper, we review the applications, algorithms, and solutions
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that have been proposed recently to facilitate edge video

analytics for public safety.
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I. I N T R O D U C T I O N

Video surveillance and video analytics have been substan-
tially growing from practical needs in the past decade,
being driven by a wide range of applications in public
safety [1], [2], e.g., identifying crimes in a city-wide
video surveillance system or monitoring firefighting safety
in fireground control centers by sharing the firefighting’s
video view. In the past, most video surveillance systems
transmitted the video to a public or private cloud for video
analysis. However, as the scale of a video surveillance
system increases, a huge number of video data transmis-
sion and computation-intensive video analysis bring an
overwhelmed burden for cloud-based solutions on comput-
ing and network infrastructures [3]. Moreover, for mobile
cameras used in fire departments and emergency medical
services (EMS), the video data are not always reliable
due to the unstable network connection. They also cannot
reach the cloud-based video analytics services in time and
they are only able to undertake lightweight video analy-
sis on board and have a postanalysis in the cloud. Cur-
rently, with large-scale video surveillance, more and more
intelligent cameras are used in public safety systems [4].
It enables part of the video analytics workload, e.g., face
detection, to execute on the edge devices, reduces the com-
putational burden of the cloud, and saves a large volume of
video data transmission to the cloud, which coincides with
edge video analytics. However, current intelligent cameras
can only analyze videos with built-in fixed algorithms [5].

Inspired by emerging edge computing [6], [7] (also
known as fog computing [8], mobile edge comput-
ing [9], or cloudlet [10]), edge video analytics refers
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to performing part or all of the video analytics work-
load on the edge devices, i.e., cameras and edge servers.
The noteworthy advantages of edge video analytics for
public safety (EVAPS) include: 1) low data transmission
overhead; 2) low response latency; and 3) enabling vari-
ous unprecedented applications achievable. In particular,
for mobile cameras carried by police, unmanned aerial
vehicles (UAVs), and firefighting robots, the edge video
analytics can avoid a large number of data transmission
by mobile devices in an unstable network on connection
and bandwidth [11], [12]. Taking edge video analytics on
body-worn cameras as an example, it enables surrounding
objects and incidents to be captured and reported auto-
matically without high latency on data transmission and
processing on the cloud, which can significantly improve
public safety as well as the police officers’ safety [13].
However, how to optimally and dynamically offload work-
loads in an edge-cloud environment with real-time video
analysis is still an insoluble problem in both industry and
academia.

In this paper, we review the applications, video ana-
lytics algorithms, and platforms, which have been pro-
posed or deployed recently to facilitate EVAPS. First,
we review a variety of public safety applications, applied
in four departments, including the police department,
transportation department, fire department, and EMS, and
explain how they work or what their positive influences are
on public safety, e.g., reducing the crime rate. However,
as far as we know, the EVAPS applications are unevenly
developed. At present, the most popular and successful
public safety application is crime identification [4], [14],
by recognizing faces in city-wide video surveillance sys-
tems. For EMS, edge video analytics is only used in a few
scenarios, e.g., patient monitoring. Second, to understand
how a video is analyzed and which part of the workload
could be offloaded to the edge, we dissect the general
video analytics process as well as review typical video
analytics algorithms used in these special applications in
the field of public safety. Face recognition for police depart-
ments, vehicle recognition for transportation departments,
and flame detection for fire departments are examined. At
last, we review proposed platforms or systems for EVAPS,
parts of which have partially supported workload offload-
ing and could play a role of reference for other EVAPS
frameworks, platforms, systems, and applications.

The remainder of this paper is organized as follows.
We first introduce video analytics for public safety and
edge computing, followed by a discussion about how
EVAPS benefits from edge video analytics in Section II.
The public safety applications and related video analytics
technique are reviewed in Sections III and IV, respectively.
We review recent video analytics platforms in Section V,
which can be used for the improvement of public safety,
in terms of cloud-based and emerging edge-based systems.
For the development of EVAPS, we discuss and present sev-
eral points as future works in Section VI. Finally, we con-
clude this paper in Section VII.

II. E D G E V I D E O A N A L Y T I C S
F O R P U B L I C S A F E T Y

Typically, video analytics is to collectively leverage the
advanced computer vision (CV) and artificial intelligence
(AI) to solve the four-W problem. That is to identify Who
has done something (What) at a specific place (Where)
at some time (When) [1]. Therefore, video analytics
techniques are widely adopted in public safety-related
departments, including the police department [4], [13],
transportation department [15], [16], fire depar-
tment [17], and EMS [18]. Taking face detection
and recognition technique as an example, it enables
identification of crimes in a video, and this could serve as
a major boon to transform many public safety applications.
The primary application is that of identifying a crime in
city-wide video surveillance systems, used by the police
department. Also, the fire department can leverage face
detection to find survivals in video captured by infrared
(IR) thermal cameras in fireground filled with smoke.

However, the sources of public safety video data are
exploding and on the move, including video surveil-
lance cameras, body-worn cameras, dash cameras, UAVs,
robot cameras, and so on. It leads to a high burden for
centralized cloud-based solutions with high requirements
on computing capability, storage capability, and network
bandwidth. Moreover, as the development of hardware,
more and more cameras are promising to equip with a
powerful computing unit, e.g., GPU, field-programmable
gate array (FPGA), and even AI chip [19], [20]. In this
case, the concept of edge video analytics is proposed to
transform public safety applications.

The emerging edge computing refers to “the enabling
technologies allowing computation to be performed at
the edge of the network, on downstream data on behalf
of cloud services and upstream data on behalf of Inter-
net of Everything service” [6]. Note that the edges are
complements of the existing cloud-computing model. It is
promising for latency-sensitive applications by leveraging
resources at the proximal edge of data sources instead
of in the remote cloud, which saves considerable time
on data transmission. Inspired by edge computing, edge
video analytics allows video analysis to be performed at
the edge close to the cameras. As shown in Fig. 1, the video
analytics workload is distributed on the path of cameras to
the cloud.

Instead of traditionally transmitting video data to the
cloud, edge video analytics enables edge devices to per-
form various detection algorithms for different public
safety applications, e.g., face detection for the police
department and vehicle detection for the transportation
department. In addition, the results of object tracking
algorithms can be used to control cameras directly or blur-
ring algorithms protect the privacy of citizens. Finally,
valuable information in videos are extracted and sent to
the cloud for further analysis, e.g., depicting a person’s
trajectory through multiple cameras. Here, the extraction
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Table 1 Typical Applications/Events Benefited From/Based on Video Analytics Techniques

process effectively reduces the data transmission to the
cloud and therefore the transmission cost, in terms of
traffic, bandwidth, and payment. A simple but typical pub-
lic safety application, promising to be benefited by edge
video analytics, is that of cropping out and transmitting
the interested area of a video, e.g., injury, instead of the full
view of video, which significantly improves the quality of
service (QoS) of video transmission, especially in a moving
ambulance with an unstable network.

In addition, in some countries, e.g., China, the law
enforcement requires the video data to be stored for sev-
eral months. Edge video analytics can also reduce the cost
of these parts. In most cases, since the video analytics
have been performed, it can avoid the live video data
transmission unless the officer requires this feature for
activating. It means the video data can be compressed by
various techniques, resulting in a low data transmission
cost and storage cost for the cloud.

Fig. 1. Overview of EVAPS.

III. A P P L I C AT I O N S I N E V A P S

In this section, we review a few typical applications
of public safety around the world, used in the police
department, transportation department, fire department,
and EMS. The typical applications or events benefited from
video analytics techniques are listed in Table 1.

A. Police Applications

The biggest application domain of video analytics in
the police department is intelligent video surveillance,
which utilizes various video analytics techniques to recog-
nize humans, vehicles, and even criminal activities, e.g.,
a human with a criminal history or shooting event. In this
section, we introduce several typical applications in the
police department, which have improved public safety.

Due to the capability of improving public safety,
an increasing number of video surveillance systems are
being generated to protect people’s safety around the
world [32], and a huge number of video data are processed
by video analytics techniques. According to the British
Broadcasting Corporation (BBC) report [4], a British
reporter was identified in just 7 min by a camera in China
after Chinese police officers added his face photograph
to the database; China was reported to have a huge
surveillance network of over 170 million cameras with
400 million new cameras expected to be installed in the
next three years. The key technique here is video-based
face recognition.

Similarly, the Singapore government built a Safe City
Test Bed, utilized since 2013, in which video surveillance
and video analytics techniques are widely employed, aim-
ing to improve the city safety [33]. Moreover, a face recog-
nition technique called NeoFace Watch [34] is deployed in
Surat, India, which enables the police to be alerted in real
time regarding suspicious criminals or activity detected
in the surveillance zone. As a result, the crime rate has
dropped 27%, and 150 cases were solved after the system
had been deployed [14]. In addition, an application that
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enables a large-variety of rarely occurring activities to
be detected is also important for public safety, such as
counterterrorism and crowd monitoring.

Moreover, the video surveillance systems are not only
used to find a criminal person but also help the citizen,
e.g., finding missing children by recognizing the missing
children in city-wide video surveillance. Zhang et al. [21]
have also proposed a kidnapper tracking application to
enhance the America’s Missing: Broadcasting Emergency
Response (AMBER) alert system by tracking the kidnap-
per’s vehicle. Furthermore, many other applications have
been proposed about video analytics in a video surveillance
system. Arroyo et al. [22] proposed a complete application
of the real-time detection of potentially suspicious behav-
iors in shopping malls.

Along with video surveillance, there exist mobile
camera-based public safety applications, e.g., body-worn
cameras and UAV-based cameras, which are widely used in
the police department. For example, Motlagh et al. [35]
proposed an application that leverages UAVs to obtain
facial images, quickly. Moreover, Wang et al. [36] also
mentioned an application that leverages UAVs to detect
survivors in the ocean after a shipwreck. Furthermore,
Zhang et al. [11] envisioned an application where
the surrounding objects and incident can be captured
and reported automatically by body-worn cameras. Also,
the police can be alerted in a real-time manner when
he or she encounters a dangerous person with a criminal
history or when a shooting or fire event happens.

B. Transportation Applications

Video surveillance with vision-driven techniques [37] is
widely deployed in our cities as intelligent transportation
systems (ITS) [15] to detect and track vehicles passing
through controlled areas to detect anomalous public safety
events, e.g., congestion, speeding violations, illegal driving
behaviors, and so on. In this paper, we mainly present
three vision-based techniques in ITS, i.e., automatic license
plate recognition (ALPR), traffic analysis, and in-vehicle
behavior recognition.

The ALPR system is one of the essential components in
ITS to analyze and track the vehicles in cities [38], [39].
In law enforcement, ALPR systems are widely adopted by
agencies throughout the nation to enhance their enforce-
ment and investigative capabilities, expand their collection
of relevant data, and expedite the tedious and time-
consuming process of comparing vehicle LPs with lists of
stolen, wanted, and other vehicles of interest. As reported
in [40], the ALPR alert in California provided the investiga-
tive lead in a Kansas murder case [41], and ALPR detection
led to the recovery of a stolen car in Louisiana [23].
Moreover, ALPR helped identify the suspect in an Indiana
incident involving a vehicle that nearly strikes a police
chief [24]. In addition, ALPR systems can be employed in
the security control of restricted areas, highway electronic
toll collection, red light violation enforcement, parking
management systems, and so on [16].

Traffic analysis is mostly used to obtain traffic flow at
the intersection, which is one of the high portion incident
sites where vehicles and pedestrians interact in a variety
of behaviors [42]. Ki and Lee [25] designed a system that
can understand participant behaviors and detect conflicts
and accidents as well as control traffic signals based on
analyzed traffic parameters to improve mobility and trans-
portation safety and reduce traffic congestion in ITS. In
addition, anomaly behaviors also impact public safety, and
video-based techniques are employing CV approaches to
analyze and identify the vehicles’ motion pattern and find
anomaly behavior, e.g., parking violations, illegal turns,
illegal lane change on the highway, violation of traffic line,
and so on [43].

In addition, the behaviors of drivers and passengers are
the most important elements affecting public safety, e.g.,
drowsiness and distraction are two main reasons for traffic
accidents [44], which seriously affect public safety. In this
case, the surveillance system can be used to recognize
these dangerous behaviors, e.g., seat belt violations [45]
and illegal cell phone usage while driving [46]. With the
development of ridesharing services, e.g., Uber, a big chal-
lenge remains in guaranteeing the safety of passenger and
driver. Liu et al. [47] designed an attack detection applica-
tion to ensure in-vehicle safety, which can recognize speech
in a vehicle and detect driving behaviors, i.e., abnormal
trajectory, and capture video while in danger, as well as
upload video to the cloud for further analysis.

C. Firefighting Applications

The work on video analytics in the fire department
focuses on fire monitoring, i.e., forest fire monitoring and
firefighting scene. Various cameras carried by firefight-
ers or mobile devices, e.g., hand-held IR cameras with
firefighters, multiple cameras with firefighting robots, and
UAVs, collect most of the video data. However, due to the
limitation of the network, most of the data are processed
at the devices, such as robot, or the edge of the network,
i.e., the local control center.

Due to limitations of infrastructure in a forest, it is
difficult to monitor the entire place through traditional
methods, relying on watchtowers, human observers, and
satellites. The UAV is expected to change this dilemma
due to its mobile characteristics for forest fire surveil-
lance. Many UAV-based systems [17], [48] have been
proposed and they usually equip not only IR cameras,
due to the convenience on capturing fire by temperature,
but also visual cameras for smoke detection. For example,
Yuan et al. [26], [27] proposed to detect a flame in a forest
based on the visual and thermal video, captured by UAVs’
cameras. Moreover, smoke detection is usually used for an
early warning as studied by Ma et al. [28].

The firefighting robot usually equips with multiple cam-
eras, i.e., visual cameras and IR cameras, for sensing envi-
ronment, and feedback the control of components, e.g.,
a nozzle for extinguishment, and a communication mod-
ule for remote monitoring and controlling. For example,
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Table 2 Part of Algorithms Used in Public Safety Applications (LP: License Plate)

the commercial firefighting robot Thermite [29] is small
enough to get through doors, scoot down hallways, and
even use elevators but strong enough to carry a robust
dual fire suppression system and a robotic arm for downed
victim extraction. Kim et al. [49] proposed a firefighting
robot integrating IR camera and radar sensor to locate and
measure distances to objects in the thermal video data.
To reduce the searching time for the fire source in smoky
indoor environments, Kim et al. [50] also proposed to
locate the fire source according to the direction of smoke
in the thermal image, detected based on the Bayesian
estimation. To autonomously extinguish, the firefighting
robot usually recognizes the spray and feedback from the
control of the nozzle [51].

D. EMS Applications

Health care includes responsive emergency care and reg-
ular care [52], [53]. EMS systems provide transportation
and medical care to maximize the survival probability of
patients. In this paper, we mainly focus on the edge video-
based EMS, which is an important subcategory in health
care, requiring much real-time operation to be better
guaranteed by the emerging edge computing. We classify
the services as prehospital EMS and patient emergency
monitoring services.

Most situations require paramedics with specific skills
and knowledge, which are common in the hospital but less
at the prehospital EMS. Video-based telemedicine is one of
the most effective ways to improve the quality of prehospi-
tal care. The Houston Fire Department launched a pilot
project, ETHAN [18]. It is a real-time video chat-based
screening system that allows paramedics to participate in
real-time video consultation of medical control physicians.
Wu et al. [30] studied the application of wearable sensing,
smart mobile devices, and video technology in EMS and
then proposed an efficient, intelligent real-time emergency
system for prehospital EMS to improve the quality of EMS
using various sensors and live video streaming. In addi-
tion, several glass-enabled EMS applications have been
developed [54]–[57], and the manner of wearing the
glasses allows users to keep working while performing a
remote video. For example, a project using Google Glass
for paramedics was launched in 2014, but Google Glass
rapidly indicated a lack of connectivity stability and very
short battery life [58].

Moreover, several patient emergency monitoring appli-
cations used video-based systems to monitor and recognize

people’s different activities [59]–[61], e.g., fall detection.
Currently, fall motion is one of the main causes of injuries
for the elderly. Rougier et al. [62] designed an eight-IP-
camera surveillance system for fall detection based on
human shape deformation. In addition, depth cameras
such as Kinect were studied in [63] and [64] to develop
a monitor system with high accuracy.

IV. A L G O R I T H M S I N E V A P S

The video analysis algorithms are usually computation-
intensive and offloading all workloads to edge devices
brings an overwhelming burden. In this section, to under-
stand which parts of the workload could be offloaded
to the edge, we briefly introduce the general processes
of video analytics in different public safety applications,
followed by the introductions of several common algo-
rithms. Then, for these four public safety application cate-
gories, we introduce typical algorithms, followed by a brief
discussion.

A. General Process of Video Analytics

The process of video analytics usually can be divided
into several stages as shown in Table 2. To better under-
stand the video analytic effect on video, we take a typi-
cal video analytics process with face recognition (shown
in Fig. 2) as an example. Generally, as the video analytics
progresses on the edge, the amount of output data reduce,
and demanded workload increases. The function of these
stages is described as follows. In particular, we introduce
these common algorithms here, and then, respectively,
introduce the special algorithms appearing in these four
categories of public safety application.

1) Video Decoding: Currently, cameras are able to pro-
vide a real-time streaming protocol (RTSP) or real-time
messaging protocol (RTMP)-based interface for pulling
video data. Thus, the first step is decoding the video
data into a series of frames with different parameters,
i.e., resolution and frames per second (FPS). There are
many video encoding formats, such as H.264 [65], MPEG,
H.265, and so on.

2) Preprocessing: In this paper, we consider all opera-
tions, between video decoding and image segmentation,
to be preprocessing operations, which include various
image editing operations, such as image enhancement,
noise reduction, lens correction, and so on. Thus, in gen-
eral, these operations are used to improve the quality of an
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Fig. 2. Typical process of video analytics.

image and correct the image from distortions. For instance,
an image, captured by an inclined traffic camera in the
dark, can be made lighter through image enhancement and
twisted to a normal image for remaining operations.

3) Image Segmentation: Image segmentation is the
process of partitioning an image into multiple segments
(e.g., motion, foreground, and background). This type of
operation is usually used to segment suspicious regions
in video sequences. Motion detection is widely used
in EVAPS, which is the process of detecting motion regions.
The typical motion detection algorithms can be classified
into three classifications as follows.

1) The background difference method [66] is one of
the most commonly used methods, which detects the
motion region based on the difference between the
current frame and the background image.

2) The optical flow method [67]–[69] can detect the
object with independent motion, which uses the
optical flow characteristics of moving objects with
time. The advantage of this method is that it can
detect independent moving targets even in the pres-
ence of camera motion, e.g., cameras in UAVs.

3) The frame difference method [70] is less affected
by light changes while it uses pixel-based time
difference and thresholding between two or three
adjacent frames in a continuous video sequence to
extract motion regions.

4) Object Detection: This process usually aims to clas-
sify the regions of interest (ROIs) into a certain class
(e.g., humans, buildings, or cars). The popular objects in
public safety include the face, pedestrian, vehicle, flame,
and smoke and can be detected by corresponding detection
algorithms. The details are introduced in different applica-
tion scenarios.

5) Object Recognition: The goal of object recognition
technologies is classifying the observed objects into seman-
tically meaningful categories. For example, the convo-
lutional neural network (CNN)-based object recognition
model, Inception v3, could recognize 1000 types of
objects in images.

6) Object Tracking: Object tracking is the process of
locating a moving object (or multiple objects) over time in
a video. Thus, it can save repeating recognition operations,

resulting in the reduction of total video analysis latency.
The object tracking is also used in these four scenarios, and
the typical object tracking algorithms can be classified into
several categories. For example, a region-based tracking
method usually aims to track foreground regions or blobs
after background subtraction, and feature-based track-
ing is using various features to track the object in a
video, e.g., histogram of oriented gradient (HOG) [71],
Haar-like [72], color [73], and edges [74]. In addition,
models based on deep CNN have dominated recent visual
tracking research [75]–[77]. In addition, the multiple
object tracking algorithm has been a hot topic in recent
years [78], and more difficult but useful in real video sur-
veillance systems than single object tracking algorithms.

7) Data Fusion: Data fusion is used to obtain more
consistent and useful information by integrating several
video analytic results from different video sources than
that provided by any individual one. A typical application
using data fusion is identifying the same person in multiple
city cameras, which is also named person reidentification.

In addition, the following are also important in video
analytics.

1) Generally, image segmentation extracts the regions,
probably including interested objects, in images,
e.g., a region of 200 × 200 extracted from a image
of 1920 × 1080. Then, object detection algorithms
detect whether an object is contained in a fixed-size
window, e.g., 30 × 30, and scan the region using a
sliding window method.

2) In the above-mentioned seven stages, several stages
can be integrated into one step in deep learning
(DL)-based algorithms (models), which can directly
recognize the object in an image without image
segmentation and object detection operations,
by inserting an object detection layer in a neural
network with selective search. However, the regular
CV algorithms also play an important role in video
analytics, especially in preprocessing and object
tracking domains.

B. Algorithms in Police

The most popular and basic algorithms used in the
police department are face detection and face recogni-
tion. Moreover, activity detection is also important, while
a series of rarely occurring activities might be preludes
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of terrorist attacks, as reported in [79]. Furthermore,
person reidentification technologies are also important for
automatic searching of a person’s presence across multiple
cameras.

1) Face Detection: Face detection is used to find the
facial ROI in images, usually with a less computational
overhead, significantly reducing the overhead of the data
transmission, and is thus suitable to be offloaded to the
edge. The development of face detection technique can
be divided into three stages. First, face detection algo-
rithms use a template matching technique to match a face
template image to each ROI in the image to determine
if there was a face. The machine learning technique has
also been used to detect a face image, including neural
networks [80] and support vector machines (SVM). Sec-
ond, Viola and Jones [81] designed a novel face detection
algorithm, which proposed the AdaBoost framework-based
classifier (cascade classifier) leveraging a Haar-like feature,
constructing a strong classifier with high accuracy through
multiple simple weak classifiers. This type of cascade clas-
sifiers allows a strong subclassifier to eliminate a large
number of nonface images in the initial simple classifier.
Third, many DL models are proposed. Cascade CNN [82]
uses convolutional layers instead of the classifiers in a
cascade classifier, and multitask cascaded convolutional
network (MTCNN) [83] works in a similar way, but is
more clever and reasonable. R-CNN [84] is a breakthrough
work on proposing a novel model to avoid using the sliding
windows with high performance, and fast R-CNN [85] and
faster R-CNN [86] are improvements to R-CNN. Based on
R-CNN, face R-CNN [87] is proposed, which is optimized
for the particularity of face detection.

2) Face Recognition: At the beginning of researching
about face detection, many types of algorithms are used
to distinguish different faces, e.g., geometric feature-based
algorithms, template-based matching algorithms, subspace
algorithms, and so on. Two representative works are Eigen-
Face [88] and FisherFace [89]. In the second stage, artifi-
cial feature and classifier are used together to recognize
a face image. The common classifiers include neural net-
works, SVM [90], Bayesian [91], etc., and many features
are used in face recognition problems, e.g., HOG, scale-
invariant feature transform (SIFT), Gabor, local binary
pattern [92], [93], and so on. Currently, many DL models
are proposed and have been deployed in real systems.
DeepFace [94] was proposed by Facebook in 2014, and it
is the foundation work of deep CNN in face recognition
and achieves an accuracy of 97.35% on Labeled Faces
in the Wild (LFW) database. After that, Google proposed
FaceNet [95] in 2015 with an accuracy of 99.63% on the
LFW database. Sun et al. [96]–[98] also proposed a set
of face recognition models, i.e., DeepID1, DeepID2, and
DeepID3, respectively. However, the trained models are too
large with a lot of computing and storage overheads to be
offloaded into resource constrained edge devices, thus face
recognition is performed in the cloud, generally.

3) Others: In addition to the above-mentioned algo-
rithms, there are many other algorithms widely used in
EVAPS. Activity recognition algorithms [99] aim to recog-
nize the actions and goals of one or more people from
a series of observations on the people’s actions and the
environmental conditions, which can be used to detect
shooting event. Person reidentification algorithm is used
to find an individual in diverse locations over different
nonoverlapping camera views [100], enabling the capabil-
ity of tracking one person in the city-wide environment.

C. Algorithms in Transportation

In this section, we mainly introduce the ALPR algo-
rithms, vehicle detection, and behaviors analysis, which
are widely used in transportation applications.

1) ALPR Algorithms: To recognize an LP, three stages
are commonly applied, LP detection, character segmenta-
tion, and character recognition, in which the latter two
can use a sweeping optical character recognition (OCR)
engine to recognize an LP number [101]. After applying
image segmentation, e.g., motion detection, motion areas
are generated. Then, edge detection is used to select
a few suspicious LP areas. Many operators are defined
such as Sobel, Laplacian-of-Gaussian (LoG), Canny, and
Prewitt [102] in edge detection. Then, many classi-
fiers are proposed, such as SVM and pattern recognition
[101]. In addition, many DL models are proposed. Meng
et al. [103] proposed a CNN model named LocateNet
with ten layers for predicting the four vertices coor-
dinates in detection. Selmi et al. [104] integrated the
DL architecture represented by the CNN model to filter
and distinguish between LPs and non-LPs, performing
LP detection. Similar to face detection, ALPR can be
offloaded to the edge. Nevertheless, it should be noted that
ALPR is a time-consuming task, and we can reduce its time
consummation with piezoelectric sensors in road, which
avoids a large number of invalid ALPR tasks.

2) Vehicle Detection: Vehicle detection is capable of
detecting vehicles, measuring traffic parameters, and ana-
lyzing vehicles from images or video clips. Typically,
the features in target samples are first extracted, and
then classifiers are used to detect vehicles on extracted
features, e.g., the Bayesian classifier on color features [81],
the boosted classifier on Haar-like features [105], and
AdaBoost classifiers on HOG features [106]. Moreover,
Wu and Juang [107] proposed an adaptive vehicle detec-
tion method. It used the histogram equalization to remove
the effects from light and weather. Then, the ROI is
checked by the difference channel image in the RGB image
and can be detected by the mechanism of merging and
splitting moving objects. In addition, the And-Or graph
model is employed to detect a vehicle by means of the
vehicle’s window edge, taillights, LP color, contour, and
texture features [108], [109]. With the development of AI,
DL algorithms are also proposed. Generally, vehicle detec-
tion algorithms are suitable to be offloaded to the edge.
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3) Others: Behaviors analysis on the vehicle, traffic
behavior, and even drivers are also important for public
safety. The traditional process also includes several steps,
i.e., feature extraction and classification. For example, traf-
fic behavior of incident detection algorithms can be divided
into pattern recognition-based algorithms [110], statistic-
based algorithms [111], AI-based algorithms, and so on.
Detecting the seat belt violation and illegal cell phone
usage while driving is commonly behavior analytic [112].

D. Algorithms in Firefighting

In firefighting, video analytics is usually used to enhance
vision for understanding fireground and monitor forest
fire; therefore we introduce the algorithms in these two
scenarios, i.e., flame detection, smoke detection, and
object recognition. Note that the biggest difference in these
scenarios is the usage of IR cameras, so the algorithms used
in image segmentation stages are also different from other
scenarios. Based on our observations, flame detection and
smoke detection are generally executed on the edge due to
limited network connections, as well as image segmenta-
tion, which is executed before detection algorithms.

1) Image Segmentation: Due to the mobility of camera
carriers, motion detection cannot work well and several
algorithms are proposed. For visual video, the color of
the flame and smoke is a typical and useful charac-
teristic to segment and detect the candidate regions in
images [113], [114]. For thermal video, the temperature
intensity captured by IR cameras is a useful characteristic
for image segmentation [115].

2) Flame Detection: After segmenting the ROIs, flame
detection algorithms [116] can be executed to finally
decide whether the region is a flame image or not
by feeding values of features to various classifiers,
i.e., SVM [117], Bayesian classifiers [50], Markov models,
and blob counter method [118]. Generally, several features
could be used in flame recognition, such as texture [117],
flickering, and motion vector [118]. Most flame detection
algorithms rely on several features at the same time. For
example, Yuan [119] comprehensively consider the factors
of color, shape fluctuation, and growth rate based on a
Gaussian mixture model. Moreover, several CNN-based
flame detection models [120], [121] have been proposed
without image segmentation.

3) Smoke Detection: Color-based algorithms are more
suitable due to the motion of cameras. Then, most of
the approaches use color and motion features to detect
whether the candidate region is a smoke. In particu-
lar, since the color of smoke is kaleidoscopic, a pre-
processing operation is prepared to enhance the smoke
color nonlinearly in work [114], and then, the saliency
of smoke is measured to estimate the candidate smoke
region along with motion energy. Furthermore, a small
number of DL-based approaches are proposed, such as
CNN based [122] and deep normalization and convolu-
tional neural network based [123].

4) Others: Person recognition algorithms are also used
for searching victims. For example, Ulrich et al. [124]
proposed to recognize the person using microdoppler
and IR camera, which can be used for firefighter and
firefighting robots to find a person in fire and smoke
environments. To make firefighters easily understand fire-
ground, the CNN-based algorithms are leveraged to recog-
nize objects in an IR camera. In some cases of the
firefighting robot domain, data fusion is needed. A typ-
ical example is fusing the analytic results of multiple
cameras to locate the spray and flames, accurately. For
instance, McNeil and Lattimer [51] proposed to use
two IR cameras to recognize and locate the spray and
the flame. Feeding the locations of the spray and the
flame, the robot can adjust the nozzle angle to optimal
extinguish.

E. Algorithms in Emergency Medical Service

Currently, a video conference technique is usually used
in prehospital EMS for remote helping, which uses video
encoding/decoding for data transmission. In addition to
the video conference technique, fall detection is used
in patient emergency monitoring services, which can be
offloaded to the edges, such as cameras and local servers
in home, hospital, and so on.

1) Fall Detection: Lee and Mihailidis [125] proposed
to use a shape feature vector composed of five elements
to represent the silhouette of a person, i.e., center of
gravity, the perimeter of the object, the ferret diameter, and
velocity of the center of gravity to detect the fallen person.
Sehairi et al. [126] also proposed a fall detection algorithm
based on combining shape features and motion analysis,
which compute the vertical velocity of the head without the
need of tracking filter since the tracking filter-based meth-
ods generally cost more resources and time. Meanwhile,
this method avoids dependence of the skin or hair color-
based detection to estimate head coordinates, which often
limits the capability of such algorithms. Then, a classifier
is used to detect whether the person in the video has
fallen or not, e.g., SVM. Several neural network models
are also proposed and deployed [127], [128]. For exam-
ple, Alhimale et al. [128] implemented an intelligent and
video-based fall detection system using a neural network.

In addition to vision-based solutions, several nonvision-
based methods are also proposed, such as leveraging
accelerometer sensors in smart phones, which also have
good performances. However, in this paper, we mainly
focus on vision-based solutions.

F. Discussion

We have introduced the general process of video analy-
sis and a few frequently used video analytics algorithms
in public safety. As the processing of video analytics,
the amount of data that needs to be transmitted decreases.
For example, a preprocessed video may be the same size
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Table 3 Part of Platforms Introduced in Our Paper

as the original video or slightly lower than the origi-
nal video. However, for a video after detecting faces,
only facial images need to be transmitted for recogni-
tion. Take a full-HD video (1920 × 1080) as an example.
Its network bandwidth cost and transmission latency are
around 6 Mb/s and 120 ms, respectively, and the size
of a facial image may be only 50 kB [129]. Moreover,
using a tracking algorithm can further reduce the data
transmission, since the face image can be transmitted only
when the person appears or walks out of the monitoring
area.

Although edge video analytics can bring many benefits,
offloading all workloads to the edge is impossible due
to various reasons. A typical reason is the many video
analytics algorithms consume many computing resources,
such as sliding window-based object detection, and various
DL models. Take Inception v3 as an example. The time
consumption, respectively, is 153 and 242.8 ms on the
Intel i7-6700 CPU and NVIDIA Jetson TX2, respectively,
which is usually performed as an on-board edge device
for UAVs or cameras. Note that a video may consist of
tens of frames, according to the value of FPS. Therefore,
in the design phase of a platform, we should consider
these tradeoff factors, in terms of network, computational
resources, and latency. In the next section, we introduce
several recently proposed video analytics platforms, espe-
cially edge video analytics platforms.

V. P L AT F O R M S I N E V A P S

In this section, we introduce the platforms in EVAPS
as listed in Table 3, followed by several general-purpose
platforms. Here, we classify these platforms based on their
detailed implementations in papers, which might be the
most suitable domain. Furthermore, a part of them can
also be deployed into other domains with a few revi-
sions. Dynamic means that the platform enables workload
offloaded between edge–edge or edge–cloud, and air posi-
tion indicator (API) provides an interface for developing,
e.g., customized offloading strategies or customized video
analytics algorithms.

A. Police Department

1) Cloud-Based Platforms: As cloud computing has
grown rapidly, a number of cloud-based video analytics
services are proposed by cloud service providers [138],
[139]. In addition, due to the privacy and law of video for
public spaces in the police department, most of them use
private clouds to handle the video analysis and storage.
Thus, many commercial private cloud-based video analyt-
ics platforms are proposed.

a) Commercial video analytics platform (IBM S3): IBM
proposed a commercial smart video analytics system
(S3) [130] as shown in Fig. 3, which uses automatic
video analytics techniques to extract information from the
surveillance data, e.g., behavior analysis, face recognition,
and LP recognition. It should be mentioned that IBM
S3 is a general-purpose platform and we introduce it here
since a few platforms used by the police department are
implemented based on IBM S3, which also means that
IBM S3 provides the APIs for developing. Mainly, the first
version of IBM S3 includes two components, Smart Surveil-
lance Engine (SSE) and Middleware for Large-Scale Sur-
veillance (MILS), while SSE provides the front-end video
analysis capabilities, and MILS provides data management

Fig. 3. Architecture of IBM S3 [130].
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and retrieval capabilities. As shown in Fig. 3, the SSEs
process video data from a variety of cameras and generate
real-time alerts and generic event meta-data, e.g., face
detection event, object detection event, and object tracking
event. To improve the performance of S3, several post-
process video analytics algorithms could be implemented,
i.e., tracking algorithms, to reduce repeated computing on
event recognition. MILS provides the data management
services, consisting of metadata ingestion services (MIS),
Schema Management Services (SchemaMS), and System
Management Services (SystemMS). The MIS allows an
engine to ingest events into the MILS’s database for index-
ing and searching. The SchemaMS allows a developer to
manage their own metadata schema for video analysis.
The SystemMS provides facilities to manage a surveillance
system, including camera management (e.g., add/delete
a camera), engine management (i.e., start/stop an analy-
sis engine for a camera), user management, and query
response (e.g., searching one event in S3 database).

Moreover, S3 provides interfaces for developers, so that
developers can develop their own basic video analytics
algorithms, e.g., face detection algorithms with higher
accuracy, and based on XML format event, high-level
event detection algorithms can also be implemented to
analyze events, e.g., person reidentification by aggregat-
ing the same facial identification in multiple cameras’
events. Alternatively, a developer can easily implement a
sophisticated event detection, constructed by basic events,
by providing a XML-written configuration file. For exam-
ple, a crowd congestion event can be defined by tens
of face detection events. In this case, to suit a real user
requirement, Prati et al. [140] implemented their own
video analytics system based on S3 by implementing a
people reidentification combining with multiple camera
video, which is important and widely used in the police
department.

In addition, many companies, such as IBM, Hikvision,
and Dahua, also propose out-of-the-box intelligent cameras
with built-in video analytics algorithms, e.g., face detec-
tion and line crossing detection, and so on. These built-
in algorithms were typically implemented on the server
side in the past cloud-based solutions. Currently, a few
intelligent camera-based platforms are being proposed. For
instance, Shao et al. [5] proposed a platform with smart
storage and rapid retrieval, which utilizes the temporal-
spatial association analytics with respect to the abnormal
events in different monitoring.

b) Object detection and classification platform in clouds:
In recent years, with the increasing scale of video sur-
veillance and the increasing complexity of video analytics
algorithms, e.g., DL models, video analysis on the cloud
has become a huge burden. To deal with this problem,
Anjum et al. [131] proposed an object detection and clas-
sification platform in clouds for high-performance video
analysis, which provides a scalable solution for video
analysis with minimum latency and user intervention,
while object detection and classification are the basic tasks

Fig. 4. Architecture of Anjum et al. [131] platform.

in video analytics and the starting point for other complex
applications. In their paper, the authors used face/vehicle
detection as the video analytics workload, and the exper-
imental results show that face detection is with a higher
accuracy, which is the reason we introduce this platform
in this category. As shown in Fig. 4, the proposed video
analytics platform includes stream acquisition for captur-
ing video streams from cameras, storage server for video
stream storage, and analysis processing server (APS) for
video analysis. The master of the APS servers handles the
video analytics task and sends it to one compute APS node.
Although compute APS node receives the task, it requests
the video data from the storage server, and decode it into
multiple video frames, followed by a multiple-thread ana-
lyzing by detailed algorithms, i.e., the feature extraction
algorithm and cascade-based classification algorithm in
their work.

In the implementation, this multiple-thread analyzing
is implemented based on Hadoop MapReduce. A video is
decoded into a number of frames as the input of MapRe-
duce. The Map task is used for processing the video frames
for object detection and classification, while the Reduce
task is used to save the results into the database.

2) Edge-Based Platforms: A lot of video analytics plat-
forms have been built to verify edge computing-based solu-
tions to reduce the burden of the cloud. Here, we introduce
two edge-based platforms. One is a hybrid edge–cloud face
recognition platform. Another one is an edge-based real-
time kidnapper tracking platform.

a) Hybrid face recognition platform: Hu et al. [132]
proposed an edge-enabled face recognition system as
shown in Fig. 5, in which face identifier is computed at the
edge (Fog in the figure) and matching is performed at
the cloud, avoiding a large volume of video transmission.
The proposed system consists of five components, four of
which are in the cloud: 1) fog nodes; 2) management
server (MS); 3) information server (IS); 4) resolution
server (RS); and 5) data center. In their system, part of
the workload of video analysis is offloaded to the fog
nodes, i.e., video decoding, preprocessing, face detection,
and facial feature extraction, and the facial feature vec-
tor is used as a face identifier. The MS connects with
edge nodes and manages IS and RS in the cloud for
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Fig. 5. Architecture of Hu et al. [132] platform.

resources scheduling and computing task allocating. The
RS performs detailed face identifier matching and returns
an address where an individual’s identity information is
located, while IS is responsible for managing individuals’
identity information. Both RS and IS share the same data
center as a database, which has powerful data storage
capability. The experimental results show that the pro-
posed edge-based system has a better performance in
terms of network transmission and response time.

b) Edge based real-time kidnapper tracking platform:
Zhang et al. [21] proposed a distributed framework
as shown in Fig. 6, (extended from their previous
work [129]), and implemented a kidnapper tracking
application by tracking the kidnapper’s vehicle, called
AMBER Alert Assistant (A3), which enables surrounding
edge devices to perform real-time video analysis. Fig. 6
illustrates the architecture of the proposed framework,
including three layers. The executor management serves
as an adapter that allocates computing resources to a
job for video analysis, i.e., motion detection and plate
recognition in their work. The job management layer,
including three major components, is proposed to manage
the task and offload its jobs to its own executor man-
agement layer or cooperative edge node when its idle

Fig. 6. Architecture of extended Firework [21].

computation resources cannot meet more task execution,
thus providing dynamic characteristic. Taking A3 as an
example, the task is kidnapper vehicle tracking in city-wide
cameras, and the jobs are video processes, including video
decoding, motion detection, and license plate recognition
(LPR), while motion detection is used to reduce the data
transmission between different edge nodes and computing
latency caused by LP recognition. For one camera, it sends
video processing jobs to collaborative edge nodes for real-
time video analysis utilizing a job-scheduling module and
diffuse the tracking task to surrounding cameras when it
does not find the vehicle in its video after a threshold
time, utilizing a task dispatch module. Similar to work
[131], it also utilizes a multiple thread mechanism for
maximizing the use of hardware performance, in which
all executors are communicated with a message queue.
The up-layer service management is used to discover sur-
rounding cooperative edge nodes and provide an easy-to-
use configuration (referring to API) for running task (i.e.,
configure how to connect a camera with task parameters),
as well as security mechanisms for the whole platform.

Based on the proposed platform, the edge nodes can
collaboratively track a kidnappers’ vehicle in real time. The
results also show that the LPR algorithm is a computation-
intensive task for edge nodes. Therefore, in an edge-based
video analytics platform, we should consider several tech-
niques to reduce the computational burden, e.g., an object-
tracking algorithm to avoid repeated LPR operation.

B. Transportation Department

The cloud-based video analytics platforms used in the
transportation department are similar to the ones in
the police department. For example, by implementing a
vehicle-tracking algorithm in IBM S3, it enables IBM S3 to
be a transportation platform. Consequently, in this section,
we mainly introduce several edge-based platforms, focus-
ing on a real-world platform and a platform for improving
public safety for emerging ride-sharing services by analyz-
ing an in-vehicle video.
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Fig. 7. Video analytics software stack, Rocket [3].

c) Real-world transportation platform: Ananthanar-
ayanan et al. [3] proposed a hierarchical geo-distributed
infrastructure to support the wide range of video analytics
in transportation scenarios, including cameras, edge
and private cluster, and public cloud as well as a video
analytics stack, called Rocket, as shown in Fig. 7. The
video pipeline optimizer (VPO) converts video queries
into a video analytics pipeline that includes many vision
modules, e.g., a video decoder, followed by an object
detector, and an object tracker. The VPO can also estimate
the resource-accuracy profile of the query by calculating
the total resource cost and accuracy for each configuration
of knobs and implementations of each module with the
labeled data from crowdsourcing to compute accuracy.
The centralized global resource manager (RM) responds
for all executing query pipelines and their access to
resources, e.g., CPU and GPU compute, network and even
parameters of cameras, according to the profile calculated
by VPO. RM also periodically determines the best
configuration of each query and places components across
the available computing nodes (e.g., edge and private
clusters and the public cloud). The detailed resource
management is implemented by standard operating
system mechanisms, camera manager, and GPU manager.
In particular, the deep neural network (DNN) execution
service (in Vision modules and DNNs) is running on each
machine for efficiently handling all DNN requests on GPU.

Based on the proposed software stack rocket,
an implemented system can dynamically decide on
the placement of the vision modules in the pipeline,
i.e., camera, edge and private cluster, or cloud, involving

Fig. 8. Architecture of SafeShareRide [47].

considering capacities of multiple resources, e.g., compute
and network. Finally, traffic analytics solutions based
on rocket have been actively deployed since 2016. For
example, in Bellevue, Washington, a multimodel object
counter has run 24/7 to help the city understand and
track cars, pedestrians, and bikes, as well as raising alerts
on anomalous traffic patterns.

d) SafeShareRide platform: Liu et al. proposed Safe-
ShareRide [47], a platform to protect the safety of pas-
senger and driver for ridesharing services. The overall
platform of SafeShareRide is shown in Fig. 8, which
consists of two components: edge or mobile devices and
the cloud. The edge component has a three-stage detec-
tion model to detect the attacks happening on a vehicle:
1) the speed recognition model recognizes the key words in
live audio, i.e., help; 2) the driving safety detection model
determines whether the driving behavior is normal, e.g.,
zigzag route, utilizing the onboard diagnostics data and
other sensors; and 3) video compression is performed at
the edge to save upload bandwidth, while video analysis
is conducted in the cloud with powerful resources. During
these two detection stages, any abnormal event will trigger
the third stage detection.

In the SafeShareRide platform, video capture and analy-
sis adopt an edge-cloud collaborative model. The related
video clips are compressed and sent to the cloud. In
the cloud, two kinds of detection are used for the video
analysis, including action detection and object recognition.
The action detection is used to detect excessive movements
of the driver and passenger, and the object recognition
leverages the CNN-based model to recognize objects in the
video, e.g., guns and knives. Finally, the alerted videos,
i.e., having abnormal movements or dangerous objects, are
shared with the law enforcement via a security link.

C. Fire Department

Similar to our introduction of firefighting applications,
we also introduce several platforms related to the fire-
ground and forest fire monitoring, which improve public
safety. Due to the limitation of the network, most of the
platforms are edge-based and have a better performance
than the cloud-based one.

1) Platforms for Fireground: To introduce the platforms
for fireground, we first introduce an edge-enabled smart

Fig. 9. Architecture of edge computing enabled smart

firefighting [133].
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Fig. 10. Architecture of edge computing enabled UAV [134].

firefighting platform, FAST, which leverages edge-based
smart devices in fireground to protect the safety of fire-
fighters. Then, we then introduce several firefighting robot
platforms, which can be used in fireground.

a) FAST: Edge-enabled smart firefighting platform: To
make firefighting smart, Wu et al. [133] explored the smart
firefighting field utilizing edge computing and discussed
the system architecture, as well as built edge-enabled
smart firefighting. Fig. 9 illustrates the architecture of
the envisioned edge computing-enabled smart firefighting.
In fireground, on the fire vehicle, there is a local central-
ized data center, also referred to as a base station, usually
deployed on a laptop, providing the user interface for mon-
itoring and tracking for firefighter safety, and advanced
communication systems for various sensors, i.e., 4G, WiFi,
and an ad hoc wireless network. In this case, the local
centralized data center can perform as an edge node,
handling primary tasks from sensors, e.g., video analy-
sis, especially for most of the cameras, including existing
surveillance cameras, hand-held IR thermal cameras, and
cameras carried by UAVs and firefighting robots. Moreover,
the edge node can upload results to the cloud or offload
the secondary tasks to the cloud, e.g., 3-D mapping for a
building.

To simulate an edge-based video analysis in fireground,
the authors evaluated the performances of flame detec-
tion in different solutions, including cloud-based and
edge-based. The data source here could be hand-held
cameras, firefighting robots, or UAVs, which can com-
municate with the edge node via various wireless tech-
niques. Since the latency on data transmission is the
same, the authors did not take this latency into account,
and the preliminary results show that edge-enabled smart
firefighting would significantly increase the system’s reac-
tive speed, with a 50% reduction in system latency on
average.

b) Firefighting robot platforms: Firefighting robots are
widely used in fireground, since it can communicate with
trapped and injured victims inside the fire scene, and
send video and audio to the control unit describing the
fire environment inside the building. Many autonomous
extinguishment firefighting robots have been proposed. For
example, the robot designed by McNeil and Lattimer [51]

consists of a series of video analytics-based components:
fire localization, water classification, trajectory modeling,
spray localization, pitch and yaw angle estimation, PI con-
trol, and visual servo control. Thus, the results of the for-
mer four components feedback to the pitch and yaw angle
estimation to obtain the control command, which enables
control of the nozzle for autonomously extinguishing by
adjusting the PI and servos. Moreover, to obtain accurate
fire and spray localization, a proposed robot is equipped
with multiple cameras, including two IR thermal cameras
and one visual camera, thus capturing multiperspective
video data. Generally, several of these firefighting robots
can be launched to work together collaboratively with the
assistance of a remote control unit, held by firefighters or a
local commander. In addition, other firefighting robot plat-
forms have been proposed in [49] and [50].

2) Platforms for Forest Fire Monitoring: Because the
drone can easily monitor the forest fire in the sky, many
UAV-based platforms are proposed to forest fire monitor.
Due to the limitation on the network, most UAVs process
all or part of the video analytics’ workload on board, which
can be classified into edge-based platforms.

Kalatzis et al. [134] proposed an edge-based UAV plat-
form for forest fire detection as shown in Fig. 10, which
consists of the cloud with a powerful resource, edge
servers with rich resources, and UAVs with the capabil-
ity of sensing. The main components for fire monitoring
include image classification service for fire/smoke detec-
tion using a DNN model, controller-hypervisor for service
management (i.e., create, run, scale and stop application-
specific virtual services) and decision-making service for
detection of an emergency-level situation. In addition,
several components are proposed to maintain the run-
ning of the system, e.g., logging services for monitor-
ing all parameters (CPU, storage), NSGI Client for data
transmission between different layers, and Orion Con-
text Broker for securely maintaining data received from
NSGI Client. The authors evaluated the performance of
the proposed platform, and the results show that the
case, while image classification runs on the edge, has a
similar latency with the cloud, but a lower volume of data
transmission. Note that the Raspberry Pi 3 Model B as
an on-board computing unit is with a lower computation
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Fig. 11. Architecture of Teleconsultant [135].

capability than NVIDIA Jetson TX2, which is more com-
monly used in UAV.

Similarly, Luo et al. [141] proposed a platform for
disaster sensing applications, including fire. The UAV cap-
tures video data and feeds a preprocessed video data
to a context-aware video scheduler, which decides if the
video should be sent to the cloud for more rigorous
analysis or not, e.g., object detection. However, due to
the limitation of wireless communication, e.g., commu-
nication radius, the communication quality decreases as
the distance increases. In order to improve the QoS of
UAV-based systems, Wang et al. [142] proposed a UAV
video transmission platform, which uses multiple UAVs as
relays coordinated by the edge servers.

In addition, in helicopter-based UAV systems, the heli-
copter not only has a heavy load capability but also has
high-performance computing that can perform all compu-
tational intensive tasks on board. Thus, the base station
can only perform the role of data fusion, accepting forest
fire alarm from UAVs, including pictures and videos. For
instance, Merino et al. [143] proposed an architecture,
consisting of several UAVs and a central station, all of
which have two main components: the decision-making
system and the perception system. The perception system
enables the UAV to carry various devices, e.g., visual
cameras, IR cameras, and computation units. The decision-
making system aims to autonomously navigate between
waypoints, thus, performing certain tasks, implemented by
four different mechanisms: task allocation, task planning,
coordination, and supervision. Although a UAV performs
a fire monitor task, it extracts fire contours by means
of on-board IR and visual cameras, and then send such
information to the central station, as well as sensed data
from various UAV sensors. By the collaboration of multiple
UAVs, the bigger areas or complementary views of a fire
could be covered/obtained in the view of a central station.
Moreover, Pastor et al. [144] also proposed a similar archi-
tecture, which processes the video data on-board using a
powerful computation unit, e.g., FPGA-based unit.

D. Emergency Medical Services

EMS is one of the public services, which provides rapid
response, transportation, and emergency medical care for
injured patients. Edge video-based EMS is largely depen-

dent on a real-time and efficient platform. Here, we intro-
duce two edge video-based prehospital EMS platforms,
while the used video-related algorithms mainly include
video encoding/decoding.

1) Teleconsultant Platform: Elgamal et al. [135]
proposed a telemedicine system, Teleconsultant, which
provides near real-time communication and treatment
information between paramedics and doctors. As shown
in Fig. 11, Teleconsultant deployed at an incident area
consists of ambulance and hospital. It is assumed that the
camera worn by the paramedic can communicate with the
laptop in the ambulance via the ad hoc WiFi P2P network,
which acts as a video streaming server and delivers the
video to hospital customers via the Nginx web server
with two modules: RTMP and HTTP Live Streaming. The
ambulance installs a wireless base station that allows the
laptop to connect wirelessly to the Internet.

In the hospital, the doctor can review the video from
the accident site from a desktop, which is equipped with a
streaming client and an in-stream processor. The stream-
ing client communicates with the streaming server to
obtain the most appropriate bit rate video stream based
on the client bandwidth. The in-stream processor is used
to decode video and perform arbitrary image process-
ing functions on the decoded frame, e.g., mouth droop
detection. Similarly, Rogar et al. [54] also proposed a
medical platform, which leverages smart glasses as wear-
able cameras in emergency medical situations. With the
platform, paramedics can access medical knowledge and
obtain assistance from hospital specialists at the accident
site via smart glasses-based video conferencing.

2) Strems Platform: Wu et al. [30] proposed an efficient
and intelligent prehospital EMS system, which explored
the use of wearable sensing, smart mobile devices, and
video technology to improve the QoS of EMS. It consists
of EMS, cloud center, and hospital, while EMS and hos-
pital are performing the role of edge. The EMS element
actually contains wearable sensing devices and a mobile
application on the ambulance, which collects data, e.g.,
electrocardiogram, vital signs, and the actual location
of the GPS, as well as captures images or short video
clips about the patient, and transmits the data to the
cloud center. The hospital has prehospital visual data from

1688 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019
Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 09:11:22 UTC from IEEE Xplore.  Restrictions apply. 



Zhang et al.: Edge Video Analytics for Public Safety: A Review

Fig. 12. Architecture of VideoStorm [145].

cloud center and real-time video conference for telemedi-
cine with EMS. The hospital can review all emergency
data, shortening the handoff time of incoming patients
when they arrive. In addition, paramedics on the EMS can
use real-time video communication to conduct additional
medical examinations, triplets, or other early medical
interventions. The cloud center consists of three parts,
i.e., a real-time video server, database system, and user
authentication. A particular real-time video server is set up
to manage point-to-point video communication. The data-
base system stores all reported ambulance emergency data.
User authentication is used to authenticate the user. A real-
time database system, i.e., firebase, is used to synchronize
the data between the EMS and the hospital, including GPS,
electrocardiogram, and so on.

As a preliminary study, the authors evaluated the
performances of live video communication between the
EMS and a hospital while the ambulances were running
at different speeds. The results show that the latency
of the high-speed is with an almost 1-s latency and
more than 40% frame loss rate for full HD video via
User Datagram Protocol (UDP)-based real-time protocol
(as part of RTSP), which is inferior to the one of low-speed.

3) Brief Summary: After reviewing many platforms in
EMS, we discovered that the video quality is very impor-
tant for a hospital’s doctors to acquire accurate on-site
information. Typically, most EMS platforms have not per-
formed video analysis on the edge, and they mainly
focus on improving video quality. Thus, video encod-
ing/decoding techniques should be given more attention.
In addition, we believe that augmented reality technol-
ogy is promising to enhance video quality with clearer
visual alerts.

E. General-Purpose Platforms

In addition to these domain-special platforms, a few
superior video analytics platforms are proposed and most

of them can be easily applied to public safety scenarios
by implementing public safety video analytics algorithms
instead of original video analytics algorithms.

1) VideoStorm Platform and Its Improvements: Video ana-
lytics can have very high resource demands to analyze the
live video in real time. Microsoft group performed a series
of works to improve the accuracy of video data query and
the usage of computation in the cloud.

a) VideoStorm: Zhang et al. [145] proposed
VideoStorm, a video analytics platform that processes
thousands of live video streams in the cloud, where
resource management is crucial for the improvement of
the costs of video analytics with two key characteristics:
1) resource-quality tradeoff with multidimensional
configurations and 2) variety in quality and lag goals.
Fig. 12 shows the high-level architecture of VideoStorm
and the specifications for video queries (i.e., two example
queries).

Each query is defined as a directed acyclic graph (DAG)
of transforms. Each transform processes a time-ordered
message stream (e.g., video frames) and its output is
passed to the next processing unit. By implementing
detailed video analytics algorithms, the platform could
be a domain-specific platform, where all video data are
uploaded to the cloud. The VideoStorm consists of a
centralized manager and a few worker machines. Each
worker machine has a machine manager to manage worker
processes, and the machine manager reports the resource
usage and status of each transform to the centralized man-
ager. Leveraging reported information, the scheduler on
the centralized manager can assign resources for queries.

VideoStorm allows arbitrary DAGs, including multiple
inputs and outputs for a transform, so that the sched-
uler can tradeoff the query configuration and high-quality
results by dynamically adjusting with offline profiling and
online phases. The offline profiler generates the query
resource quality profile, which is used by the online
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Fig. 13. Architecture of LAVEA [136].

scheduler to allocate resources to queries, aiming to
maximize performance on quality and lag. In the online
phase, the scheduler periodically adjusts resource alloca-
tion, machine placement, and configurations, changes in
demand and/or capacity for all running queries based on
the forward profile.

b) Chameleon: In addition, Jiang et al. [146]
designed a controller, Chameleon, which dynamically sets
the best configurations for deep convolutional neural
network-based video analytic pipelines. Video processing
pipelines are adapted over time to avoid low accuracy.
However, a naive reprofiling is prohibitively expensive.
Instead, Chameleon is proposed to use several techniques
to dramatically reduce profiling cost and improve accuracy.

c) VideoEdge: A key assumption in VideoStorm is
that there is enough bandwidth to ensure video data
transmission from the camera to the cloud. However,
it is impossible between a private cluster (as an edge)
and the public cloud. Thus, Hung et al. [147] pro-
posed VideoEdge to identify the best tradeoff between
multiple resources and accuracy, while they found that
video analytic queries had many implementation options
impacting their resource demands and accuracy of
outputs.

d) Summary: The work of Hung et al. [147] revealed
that VideoStorm only employs the CPU resource in a single

Fig. 14. Architecture of UAV surveillance.

cluster to optimize query knobs and resource allocation,
and VideoStorm cannot be trivially applied to problem
setting (i.e., hierarchical clouds). Chameleon [146] can
continuously adjust DNN configurations to optimize accu-
racy or reduce resources’ costs based on the temporal
and spatial correlation among the video frames. However,
Chameleon does not address the query-merging opportu-
nity, contributing to significant gains in accuracy, which is
the goal of the VideoEdge.

2) LAVEA Platform: Yi et al. [136] proposed a latency-
aware video analytics platform based on edge computing,
called LAVEA, which explores the video analytics task
for latency-sensitive applications and performs collabora-
tive video analysis at edges and the cloud. It is easy to
implement a public safety application, e.g., an ALPR-based
vehicle tracking application by creating a docker image
with the ALPR algorithm. The LAVEA (presented in Fig. 13)
mainly consists of the edge computing node (ECN) and
the edge client (EC). An ECN has many more resources
than an EC but limited compared to the cloud. When an
EC executes tasks, and an ECN nearby is available,
the tasks can be executed locally or remotely, i.e., running
on the ECN or the cloud.

ECNs: In LAVEA, ECNs provide edge-computing services
to nearby mobile devices while the ECN connected to the
same access point or base station with an EC is called
an edge front end. The edge front end always performs
the role of a master node and coordinator with other
edge and cloud nodes. In addition, multiple ECNs can
collaborate. To isolate different clients’ tasks and resources
on ECNs, virtualization technology is used, i.e., docker in
implementation, as well as container manager for manage-
ment. Based on several internal microservices, e.g., queue
services and scheduling services, the functions of identify-
ing workloads, managing queue priorities, and scheduling
tasks are implemented. Thus, the client can submit tasks
via the client API to LAVEA and LAVEA can schedule,
execute, and manage these tasks with the collaboration.
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EC: This has limited resources but handle requests from
numerous clients. Thus, heavy computing tasks could be
offloaded to nearby ECNs and only lightweight tasks run
locally. The profiler and the offloading controller perform
as participants in the profiler and the offloading services,
so that an EC can provide offloading information to the
edge front-end node and complete the offloading decision.

To implement such nodes in LAVEA, three main ser-
vices are implemented, including profiler service, moni-
toring service, and offloading service. The profiler service
collects the performance metrics of tasks on different
devices, e.g., length of task queue, and the monitor ser-
vice is used to collect runtime information, e.g., network
bandwidth and latency between different devices, so the
offloading service can decide the placement of offloading
based on collected information by the other two services.
Moreover, the authors formulated the offloading prob-
lem to an optimization problem, as well as implemented
offloading strategies to minimize the response time of
video analysis.

3) UAV-Based Platforms: The current police department
has started to leverage UAV as a mobile and flying camera
to expand the view. A few UAV-based platforms have
been proposed, and they have a similar architecture as
shown in Fig. 14. As a preliminary work, Qazi et al.
[148] investigated the technical performance of a UAV-
based real-time video surveillance system over 4G local
thermal equilibrium (LTE) using the metrics of through-
puts, loss rates, and delay in relation to the physical
aspects of wireless propagation: multipath propagation
loss, shadowing, and fading models. Moreover, Motlagh
et al. [35] proposed a UAV-based platform for crowd
surveillance, in which the UAV (called hexacopter) equips
with a Raspberry Pi as an on-board computing unit, and a
laptop serves as an edge node. The authors set up an LTE
server and both the UAV and the laptop were equipped
with an LTE transceiver. Thus, the UAV can transmit raw
video data to the laptop or analyze video data locally,
transmitting only the recognition result to the laptop,
which could be two different edge-based solutions. Since
the computing resource is limited in the UAV, the later
has a higher performance. In the above-mentioned UAV-
based platforms, we needed to implement our domain-
specific video analytics algorithms to build our own EVAPS
applications.

Wang et al. [36] proposed a UAV-based video analytics
platform, in which UAVs can transmit all or part of the
video captured to a ground-based cloudlet [10] over a
wireless network. To reduce bandwidth demand for video
transmission from a UAV to the cloudlet, the authors
proposed four strategies, EarlyDiscard (ED), just-in-time-
learning (JITL), ReachBack (RB), and ContextAware (CA).
In the ED strategy, a modified MobileNet DNN model is
used to filter video frames in the UAV camera and useful
frames are streamed to the remote cloudlet. A typical
application scenario is that the UAV detects a facial frame

on board and sends that to the cloudlet for recogniz-
ing or more accurately detecting. The JITL strategy is
based on the ED strategy that uses a cascade filter to
distinguish between the ED DNN’s true positives and false
positives, which can serve to improve the precision of ED.
Although UAVs are out for a mission, the cloudlet with
more processing power is able to run more accurate DNNs
models to identify true positives and false positives. Then,
using this information, a small JITL filter is trained and
then pushed to the UAVs, instead of training and pushing
the original DNN model with high latency. Also, taking the
previous case as an example, using the JITL strategy,
the UAV can detect a facial frame with increasing accuracy.
The RB strategy is designed to allow the cloudlet to request
a few previous frames on the UAV, which has been detected
as negative frames, but critical for event recognition. This
mechanism is particularly useful in the context of activity
detection. The CA strategy aims to dynamically choose the
optimal filter for a mission. For example, while UAVs are
going to search survivors in the ocean after a shipwreck,
the results of video analytics in the cloudlet show that the
color feature would be better for person detection. Thus,
the cloudlet could adjust the model or filter on the UAV
to adapt to the scenario. The experiment results based on
these four strategies show that a judicious combination
of UAV-based processing and edge-based processing could
save substantial wireless bandwidth and thus improve
scalability, without compromising result accuracy or result
latency. Thus, based on this platform, we can easily imple-
ment a domain-specific application by providing trained
models, such as flame detection model files for fire depart-
ment applications.

4) Wireless Video Surveillance Platform: In addition, also
due to the limitation of network bandwidth of the wire-
less connection, many edge-based wireless surveillance
systems with video analysis are proposed, as push-
ing video analytics processing on the edge can signifi-
cantly reduce the bandwidth requirement. For example,
Zhang et al. [137] proposed and evaluated a novel edge-
enabled architecture for wireless video surveillance in
which each ECN is connected to one camera to perform
simple video analytics functions, and only upload relevant
portions of the video to a controller in the cloud. The pro-
posed architecture provides a callback interface for devel-
oping its own applications, frameUtility, which returns
an integer value evaluating the importance of a video
frame to that application. Taking people counting appli-
cation as an example, an implemented frameUtility
leverages a face detection algorithm to return the number
of people in the frame, referring to the value of the frame.
Although all ECNs receive queries to count people with a
definition of the frameUtility function, each ECN calls
this function on every frame and sends the returned value
to the controller. In addition, multiple ECNs with cameras
monitoring the areas form a cluster. The proposed platform
effectively fuses the observations from ECNs in a cluster
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by communicating with each other ECN to further reduce
bandwidth. Also, taking the previous application as an
example, the frameUtility function on two cameras in
a cluster returns the same value. Thus, only one video data
of them is selected to upload to the controller. Here, two
major data fusion strategies are proposed, the basic frame-
selection algorithm and the sophisticated frame-selection
algorithm. The basic frame-selection algorithm relies on
the highest value to select the ECN to upload its images in
a cluster with a dynamical adjustment. The sophisticated
frame-selection algorithm targets cases where one camera
in a cluster sees objects that other cameras miss to select
more than one ECN to upload images. The main idea
used here is an object reidentification technique. Moreover,
the authors proposed an intercluster traffic shaping scheme
to avoid network congestion, resulting in maximizing the
number of useful objects per second delivered to the
controller.

VI. O P E N I S S U E S A N D
F U T U R E W O R K S

We have described a few public safety applications,
underlying video analytics techniques, as well as several
potential platforms in previous sections. In this section,
we further summarize these issues and bring forward
several potential solutions and opportunities worth further
research.

A. Edge-Enabled Applications

With the development of special-purpose hardware and
custom chips, e.g., AI chips, it enables the computation-
intensive AI algorithms to run on the edge devices, e.g.,
static cameras, as well as various novel applications to
be implemented, especially in mobile environments, e.g.,
body-worn cameras and smart glasses for police. However,
novel scenarios and applications bring several new chal-
lenges on the architecture. For example, law enforcement
officers are equipped with body-worn cameras and are
nearby their law enforcement vehicles when they are on
duty. Thus, how to design a platform, enabling the vehicle
to have a more powerful computing unit as an edge server
to perform real-time video analysis for body-worn cameras
is still an open question.

B. Algorithm Optimizing

On the one hand, part of video analytics algorithms
have a good performance on accuracy, and even exceeded
the accuracy of humans, e.g., face recognition. However,
the accuracy of existing algorithms should be improved,
e.g., person reidentification, and a number of domain-
specific algorithms should be developed, e.g., person
detection in fireground and criminous activity recogni-
tion. In addition, combining multiple features and modals
may be potential solutions. For example, multimodal data
fusion [149] employed to combine knowledge from edge

video and other aspects offer a much more comprehensive
and accurate understanding for a decision compared to
video-based methods.

On the other hand, although the CNN-based algorithms
provide good accuracy, it also takes a lot of computational
overhead, resulting in a high latency on resource-limited
devices, e.g., cameras. It means that most of the algorithms
have to run on the cloud or a powerful device, with an
in-time response. Therefore, to enable edge video analytics
and reduce the burden of the cloud, how to reduce the
computational overhead of CNN-based algorithms is a big
challenge. Fortunately, several ideas are promising to deal
with this issue, including structure optimization and model
compression.

C. Functional Partitioning

In edge video analytics, a key problem is how to
obtain an optimized performance by dividing the entire
process to perform on different devices, i.e., cameras, edge
servers, and the cloud. In current works, most of them
are divided at the video analytics levels by experience.
For example, Zhang et al. [11] divided person recogni-
tion into two subprocesses: face detection on the edge
and face recognition in the cloud, by exchanging face
images instead of video data. It is worthy of attention that
Kang et al. [150] have evaluated the performance of
different layers of several CNN algorithms running on the
edge and the cloud, and proved that offloading a part
of the CNN workload to the edge and remaindering on
the cloud has a better performance than all workload in
the cloud. Thus, how to support this type of workload
offloading from platform and programming perspectives is
a challenge, especially for heterogeneous mobile devices,
e.g., smart glasses and body-worn cameras in public safety
applications.

D. Dynamic Strategy

Many external factors, e.g., lighting, and internal config-
urations of cameras, e.g., white balance and sensitometry,
often affect imaging of cameras, as well as the accuracy
of the video analytics algorithms, e.g., face detection, face
recognition, and so on. Thus, preprocessing operations are
applied to harmonize these differences between different
video data with training data. However, in a city-wide
video surveillance system, different cameras usually have
different imaging, e.g., with different brightness, and for
one camera, the imaging is also changing as time. There-
fore, differentiated and dynamical configuring of different
cameras as the changes in the external environment are
needed to prevent this problem. Moreover, as the law
enforcement tasks progress, the environment and mission
objectives are changing, which might require different
video analytics algorithms as well as DL models for a
higher accuracy rate. Thus, designing a flexible architec-
ture to enable dynamically configuring for large-scale
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video surveillance systems, especially for these systems
including mobile devices (e.g., body-worn cameras),
remains a challenge.

E. System Operation and Maintenance

According to a study by Seagate Technology LLC [151],
566 petabytes (PB) of data were generated per day
by newly installed worldwide video surveillance systems
in 2016, and this value is expected to reach 3500 PB
by 2023, leading to a few challenges on system operation
and maintenance, e.g., finding a fail camera or shortening
storage of video data. For instance, a fail camera uninter-
ruptedly uploads useless video data, aggravating the over-
load in the network and wastes storage in the cloud before
the failure is detected by video analytics techniques, e.g.,
content analysis [152], moving object detection [153], and
action analytic [154].

Therefore, an edge-enabled operation and maintenance
system is promising to deal with such problems for a large-
scale video surveillance system. The key technologies are
twofold. First, an edge-enabled failure detection system
aims to find the failures in the video surveillance system
to reduce the transmission and storage of unworthy video
data. Second, an edge-enabled video semantic analysis
system can be used to reduce the transmission and storage
of unworthiness video data. For example, the video can
lower the quality of video while there is no change in the
surveillance area.

F. Security & Privacy

Security is important for any system, especially for video
surveillance systems. For instance, once a camera is com-
promised, the attacker can use it as a springboard to attack
other devices, the data center, and even other systems in
the police department. It means that the edge devices are
weak spots in the whole system. The 2016 Dyn cyberattack
leveraged a large number of IP cameras to launch a series
of distributed-denial-of-service (DDoS) attacks targeting
the Domain Name System provider Dyn, resulting in major
Internet platforms and services to be unavailable to users
in Europe and North America [155]. Various geograph-
ically distributed and resource-limited edge devices and
servers lack strict security measures, compared with a data
center.

Privacy is another problem. The video surveillance sys-
tems, especially body-worn cameras, impact police and
first responder personnel and how they do their jobs.

Therefore, understanding their privacy concerns, even
criminal rights protections, is an important challenge.
Moreover, the video surveillance systems are usually
deployed into city-wide public spaces, and this frequently
raises privacy issues of the citizen. The investigation that
happened after the Disorder of August 2011 [79], where
many images and video clips were provided by the video
surveillance, demonstrates the potential power of EVAPS
in solving and preventing crimes and acts of terrorism.
The video analyzing provides much valuable and useful
information and is a compelling need for public safety
but might also leak privacy. Thus, when we build EVAPS
applications, we also should consider the privacy of the
public, especially ethical issues and government regula-
tions. To summarize, we need to better understand how
to balance privacy and surveillance requirements. In this
case, edge computing-enabled privacy-aware video man-
agement systems present as useful and valuable future
works, namely, blurring facial regions in videos before
uploading.

VII. C O N C L U S I O N

Edge video analytics is motivated by the increasing pop-
ularity of edge computing and can be widely adopted
in various video surveillance, in terms of static and
mobile, to improve the public safety of our daily life.
In this paper, we have reviewed recent successful or poten-
tial applications of public safety. The reviewed applications
show that there is an uneven development in different
departments, and edge video analytics is promising to
improve public safety. Then, we introduced the general
video analytics process and reviewed typical video ana-
lytics algorithms used in public safety, followed by a brief
discussion, to help understand the benefits of edge video
analytics and which parts can be offloaded to the edge.
To enable an EVAPS application, a suitable architecture
is needed for its public safety application, especially in
supporting an optimal and dynamical workload offload-
ing. Thus, we reviewed several video analytics platforms,
including domain-specific platforms and general-purpose
platforms to show their experience on architecture design.
Since the edges are complements of the existing cloud-
computing mode, we also reviewed several cloud-based
platforms as comparisons. At last, we put forward the
challenges and opportunities that are worth working on.
We hope this paper gain attention from the community and
inspire more research in this direction.
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