
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024 14115

Lightweight and Secure Data Sharing Based on
Proxy Re-Encryption for Blockchain-Enabled

Industrial Internet of Things
Fengqun Wang , Jie Cui , Senior Member, IEEE, Qingyang Zhang , Member, IEEE,

Debiao He , Member, IEEE, Chengjie Gu , and Hong Zhong , Member, IEEE

Abstract—In the Industrial Internet of Things (IIoT), data
sharing is crucial for promoting the intelligent development
of industrial production. To achieve effective data supervision,
introducing blockchain into traditional cloud-based data-sharing
frameworks has attracted widespread attention. However, exist-
ing blockchain-based data-sharing schemes still have issues with
security and efficiency. Therefore, we propose a blockchain-
enabled data-sharing scheme based on proxy re-encryption. First,
the scheme considers both storage and access authentication,
guaranteeing data sources’ trustworthiness and preventing data
misuse. Second, the scheme uses an on-chain and off-chain
cooperative storage mechanism, saving the storage resources of
the blockchain. Third, the scheme supports data packing, which
effectively improves data storage efficiency. The security analysis
shows that our scheme satisfies the security requirements. Finally,
we build a blockchain platform using the hyperledger fabric.
The performance evaluation shows that our scheme is more
advantageous regarding computational overhead than other
related schemes.

Index Terms—Authentication, blockchain, data sharing, elliptic
curve cryptography (ECC), Industrial Internet of Things (IIoT),
proxy re-encryption.

I. INTRODUCTION

THE INDUSTRIAL Internet of Things (IIoT) [1] has
integrated various smart devices (SDs) and emerging

technologies into industrial production, improving produc-
tion efficiency and reducing production costs [2], [3]. To

Manuscript received 3 October 2023; revised 25 November 2023; accepted
2 December 2023. Date of publication 8 December 2023; date of current
version 9 April 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62272002, Grant U23A20308,
and Grant 62202005; in part by the Excellent Youth Foundation of Anhui
Scientific Committee under Grant 2108085J31; in part by the Natural Science
Foundation of Anhui Province, China, under Grant 2208085QF198; in part
by the Open Fund of Anhui Province Key Laboratory of Cyberspace Security
Situation Awareness and Evaluation under Grant CSSAE-2021-008; and in
part by the University Synergy Innovation Program of Anhui Province under
Grant GXXT-2022-049. (Corresponding author: Jie Cui.)

Fengqun Wang, Jie Cui, Qingyang Zhang, and Hong Zhong are with
the Key Laboratory of Intelligent Computing and Signal Processing of
Ministry of Education, School of Computer Science and Technology, the
Anhui Engineering Laboratory of IoT Security Technologies, and the
Institute of Physical Science and Information Technology, Anhui University,
Hefei 230039, China (e-mail: cuijie@mail.ustc.edu.cn).

Debiao He is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China (e-mail: hedebiao@163.com).

Chengjie Gu is with the Security Research Institute, New H3C Group,
Hefei 230088, China (e-mail: gu.chengjie@h3c.com).

Digital Object Identifier 10.1109/JIOT.2023.3340567

Fig. 1. Cloud-based data-sharing framework in IIoT.

optimize the production model and enhance decision-making
efficiency [4], [5], [6], production data (e.g., temperature)
from SDs are often shared. For example, when a batch of
products has quality problems, the product analyst needs
to analyze the production data and optimize the production
strategy. However, data sharing brings security and efficiency
challenges to the IIoT. On the one hand, for privacy-sensitive
industrial departments, exposing large amounts of private data
to an open network is intolerable [7], [8] because it may
cause industrial decision errors. On the other hand, SDs are
resource limited [9]; they cannot afford the computational and
storage overheads associated with processing massive amounts
of industrial data.

To guarantee the security and efficiency of data shar-
ing, researchers have paid extensive attention to proxy
re-encryption [10], [11] and cloud-computing technol-
ogy [12], [13]. Fig. 1 illustrates a general cloud-based
data-sharing framework with proxy re-encryption in the IIoT.
For example, to optimize production decisions, a product
analyst [as a data user (DU)] can access industrial data
generated by SDs through the framework. Specifically, the
edge server (ES) periodically collects the encrypted data
generated by the SD and subsequently uploads it to the cloud
server (CS). Once the cloud service receives an access request
from a product analyst, it performs re-encryption operation to
transform the ciphertext into ciphertext that can be decrypted

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2465-7982
https://orcid.org/0000-0001-7258-3418
https://orcid.org/0000-0002-2600-6748
https://orcid.org/0000-0002-2446-7436
https://orcid.org/0009-0001-6597-168X
https://orcid.org/0000-0002-0392-9734

14116 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

by the product analyst. By utilizing proxy re-encryption, this
framework achieves data sharing without compromising the
privacy of the original data. However, the framework relies
entirely on third-party CSs and lacks effective supervision of
data storage, access, and processing [14], [15]. For example, to
maximize profits, cloud service providers may return incorrect
ciphertext to DUs, leading to incorrect production decisions.

To solve these problems, the blockchain technology is
considered a promising solution owing to its decentral-
ized, tamper-proof, and traceability features [16], [17], [18].
Although some blockchain-based data-sharing schemes have
been proposed, the deficiencies in terms of efficiency and
security still need further improvement.

1) In the IIoT system, different entities subscribe to
services based on production tasks. Only the entities
that have subscribed to the corresponding services can
store and access the data. Therefore, the blockchain
must perform storage/access authentication to determine
whether the data uploader/user has subscribed to the
corresponding service. However, most existing schemes
fail to consider this requirement fully. For example, in
scheme [19], the blockchain only verifies the identity
of the data uploader and does not further determine
whether the data uploader is subscribed to the cor-
responding service. In this case, the blockchain may
store illegitimate data. In scheme [20], the blockchain
does not determine whether the DU is subscribed to
the corresponding service. In this case, shared data can
be misused, and IIoT privacy can be compromised.
Therefore, we must design secure storage and access
authentication algorithms.

2) The industrial data generated by SDs is massive and
needs to be processed quickly. However, in some
schemes, the blockchain needs to process a large number
of requests and store large-scale data, resulting in low
performance. For example, in scheme [21], SDs submit
data storage requests directly to the blockchain and store
encrypted data in the blockchain. On the one hand,
there are too many requests submitted by SDs while
the throughput of the blockchain is limited [22], [23],
so the blockchain cannot respond in time. On the
other hand, the blockchain needs to store too much
data while its storage performance is low [24], so it
generates significant time delays. Therefore, we urgently
need a mechanism to reduce the processing and storage
pressure on the blockchain.

Inspired by the scheme [25], we design a secure and
lightweight data-sharing scheme to solve the above issues.
Moreover, the proposed scheme not only achieves effective
supervision of the data but also exhibits low computational
overhead and high security. The contributions of the proposed
scheme are as follows.

1) We design a data sharing scheme based on proxy re-
encryption, effectively ensuring secure data sharing. To
ensure that the data source is trusted and to prevent
data misuse, the proposed scheme provides storage and
access authentication. Data can only be shared between
ESs and DUs that subscribe to the same service.

2) The scheme realizes on-chain supervision and off-chain
storage, effectively reducing the storage pressure on
the blockchain. Second, the framework uses an ES to
package and upload data from SDs, effectively avoiding
direct interaction between SDs and the blockchain,
which reduces the number of requests processed by the
blockchain.

3) The security analysis shows that our proposed scheme
is highly secure. The performance analysis results show
that our proposed scheme is effective and practical for
blockchain-enabled data-sharing IIoT.

The remainder of this article is organized as follows.
Section II describes existing relevant data-sharing schemes
and analyzes their limitations and applicability in the IIoT.
Section III presents preliminaries. Section IV details the
blockchain-based data-sharing framework. Section V details
our scheme. Section VI shows the security proof and analysis.
Section VII presents the performance evaluation. Finally,
Section VIII summarizes the study.

II. RELATED WORK

In recent years, to achieve secure and efficient data sharing,
a series of research works have been proposed.

Attribute-based encryption [26], [27] is often used in data-
sharing schemes because it enables fine-grained access control
while ensuring data confidentiality. For example, Li et al. [28]
considered that outsourced decryption does not guarantee the
correctness of the transformations performed by the CS and
proposed an attribute-based encryption scheme. The scheme
can check the correctness of the converted ciphertext for
authorized and unauthorized users. Ning et al. [29] proposed
a cloud-based data storage and sharing scheme. The scheme
utilizes attribute encryption technology to achieve access
authentication for DUs. Guo et al. [30] proposed a revocable
blockchain-assisted attribute encryption scheme. The scheme
allows CSs to perform predecryption operations to reduce the
computational overhead of DUs. To solve the problems of user
key abuse and authorization center key abuse, Li et al. [31]
proposed an attribute-based encryption access control system
and constructed an accountable data-sharing scheme.

Proxy re-encryption techniques [32] are often used in data-
sharing schemes because they enable ciphertext transformation
without compromising data privacy. Specifically, this tech-
nique allows agents to transform the original ciphertext into
a ciphertext that can be decrypted by other legitimate DUs,
thus achieving flexible data sharing. Xu et al. [33] proposed
a certificateless proxy re-encryption scheme, which achieves
data access control without fully trusting the CS. In this
scheme, the agent cannot perform the re-encryption operation
without obtaining the re-encryption key generated by the data
owner, avoiding the abuse of data sharing. For the security and
trustworthiness of the data, Ge et al. [34] presented a verifiable
and fair attribute-based proxy re-encryption scheme. In this
scheme, the DU can determine whether the data returned by
the CS is correct, ensuring that the CS is not maliciously
accused. Su et al. [35] proposed a cloudIoT platform based on
proxy re-encryption, which achieves secure data sharing. In

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LIGHTWEIGHT AND SECURE DATA SHARING BASED ON PROXY RE-ENCRYPTION 14117

addition, this platform introduces an uploading authorization
server and a download authorization server, implementing
storage and access authentication.

Although the above studies ensure data security in differ-
ent ways, they contain many time-consuming cryptographic
operations, such as pairing, which will impose a heavy
computational burden on resource-limited IIoT devices. In
addition, they do not fully realize the supervision of data
storage, access, and processing.

Considering the limitations of data supervision, some
researchers have started introducing blockchain into the
Internet of Things (IoT) [25], [36]. Although these schemes do
not give a specific data-sharing algorithm, the idea of on-chain
supervision and off-chain storage mentioned is instructive.

Agyekum et al. [37] proposed a data-sharing scheme
using blockchain. The scheme combines proxy re-encryption
and identity-based encryption to ensure secure data sharing.
However, the scheme exposes the real identity of the data
owner, which is not conducive to protecting the privacy
of SDs in IIoT systems. Manzoor et al. [20] proposed a
blockchain-based data-sharing platform. The platform uses
elliptic curve cryptography (ECC) to design a lightweight
proxy re-encryption algorithm that enables efficient and
secure data sharing for resource-constrained IoT environments.
Unfortunately, the scheme does not give a specific storage and
access authentication algorithm. Chen et al. [21] proposed a
lightweight proxy re-encryption scheme. The scheme utilizes
the blockchain technology and equality testing techniques to
ensure that data is shared securely. However, in this scheme,
SDs store data in the blockchain directly, which increases
the storage burden of the blockchain and is only suitable
for IIoT environments with low data volumes. In addition,
the scheme pays no attention to protecting the anonymity of
SDs. Lu et al. [19] proposed a blockchain-based data storage
and sharing scheme. The scheme combines group signature
and proxy re-encryption technology to provide storage and
access authentication, effectively ensuring the anonymity of
SDs and the trustworthiness of data sources. However, the
group signature contains many time-consuming operations that
impose a huge computational burden on the blockchain-based
data-sharing platform.

The above analysis shows that the current data-sharing
schemes still have some limitations and deficiencies when
used in IIoT environments. Therefore, it is meaningful and
necessary to design a secure and lightweight data-sharing
scheme that can supervise the data effectively.

III. PRELIMINARIES

In this section, we introduce preliminaries from two aspects:
1) elliptic curve cryptosystem and 2) hash function.

A. Elliptic Curve Cryptosystem

Let Fp be a finite field and E : by2 = x3 + ax2 + x be
a nonsingular elliptic curve over Fp, where a, b ∈ Fp and
b(a2 − 4)modq �= 0. Let G be a cyclic group on E of prime
order q.

Fig. 2. Blockchain-based data-sharing framework in IIoT.

1) Definition 1: (Discrete Logarithm (DL) Problem): Let
P, Q ∈ G, x ∈ Z

∗
q, and Q = x · P. Given P and Q, it

is hard to obtain x in a probabilistic polynomial time
(PPT).

2) Definition 2: (Computational Diffie–Hellman (CDH)
Problem): Let x, y ∈ Z

∗
q and given three points

P, xP, yP ∈ G, it is hard to get xyP in a PPT.

B. Hash Function

The hash function can compress any length of data into a
shorter fixed length of data. We use secure hash functions with
the following properties.

1) One Way: Given x as the input of a hash function H(·),
it can obtain y by computing y = H(x). However, given
y, it is hard to obtain x by calculating x = h−1(y).

2) Collision Resistant: Given x, it is computationally
impossible to find another data x′ �= x such that H(x′) =
H(x).

IV. BACKGROUND

This section presents the blockchain-based data-sharing
framework, threat model, and design goals.

A. Blockchain-Based Data-Sharing Framework

We consider the scenario of data sharing in IIoT. In the case
of a smart factory, the ES regularly collects the production data
of SDs and stores it in the CS. Once the products have quality
issues, product analysts, as DUs, can access this production
data.

1) Entity Overview: As shown in Fig. 2, the framework
contains six entities: 1) key generation center (KGC); 2) ES;
3) DU; 4) SDs; 5) blockchain (BC); and 6) CS.

1) KGC is trusted by other entities in the IIoT. It is mainly
responsible for generating system parameters.

2) ES is responsible for collecting, sorting, packaging, and
sharing data from SDs.

3) DU is mainly responsible for accessing the shared data
and restoring the shared data to the original data. It can
access data based on its subscribed services.

4) SD has limited computing power and storage capacity.
It is the generator and publisher of the original data.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

14118 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

5) CS is a third-party server with strong storage capacity.
It is primarily responsible for storing the packaged data
processed by ES.

6) BC is a trusted platform in IIoT that can run smart
contracts, mainly responsible for storing metadata (hides
the assisted secret key corresponding to original data and
the index of packaged data), performing storage, and
access authentication.

2) High-Level Workflow: To achieve data sharing, the high-
level workflow consists of the following eight steps.

1) KGC initializes the system and sends the parameters to
the corresponding entities.

2) SD encrypts and signs the original data. Then, the SD
sends the encrypted data to ES.

3) ES collects and packages data from SDs, stores the
packaged data in CS, and stores the corresponding
metadata in BC.

4) DU generates an access request and sends it to BC.
5) BC verifies the access request from DU, and then

requests a re-encryption key from ES.
6) BC generates a re-encryption metadata and sends it to

the DU.
7) DU obtains the assisted secret key and packaged data

index by decrypting the re-encryption metadata.
8) DU utilizes the index to retrieve the corresponding

packaged data from CS, and then the DU decrypts the
packaged data to obtain the original data.

B. Threat Model

In our proposed scheme, the attackers mainly come from
outside the system; they can launch both active and passive
attacks. Specifically, when attackers launch active attacks, they
mainly tamper with data in the IIoT system; when they launch
passive attacks, they mainly listen to data in the IIoT and try
to mine private information from it.

C. Design Goals

1) Security Goals: Our proposed scheme aims to achieve
the following security goals.

1) Confidentiality: The original data contains critical
information for industrial production, so the confiden-
tiality of the original data needs to be guaranteed. First,
the network attacker cannot obtain the original data.
Second, the network attacker cannot get the assisted
secret key and packaged data index.

2) Integrity: The use of tampered data can lead to incorrect
production decisions and reduced production efficiency,
so ensuring the integrity of data is necessary. First, ES
can detect any modification of the message sent by SD.
Second, DU can detect any modification of the packaged
data stored in the CS.

3) Anonymity: If the anonymity of the original data is not
guaranteed, an attacker can infer private information
about the IIoT from multiple sets of original data.
Therefore, the anonymity of original data must be
ensured, and the real identity of SDs should be hidden.

TABLE I
NOTATIONS AND DEFINITIONS USED

2) Functional Goals: Our proposed scheme should achieve
the following functional goals.

1) Data Packaging: ES can verify a batch of data from SDs
and then package the legitimate data.

2) Storage and Access Authentication: First, BC can verify
the legitimacy of ES’s storage request. Second, BC can
verify the legitimacy of DU’s access request.

3) On-Chain and Off-Chain Collaborative Storage: The CS
stores the packaged data. The BC holds the metadata
corresponding to the packaged data, which can realize
effective supervision of the packaged data.

V. PROPOSED SCHEME

This section presents the proposed scheme in detail. And,
some notations used in the scheme are listed in Table I.

A. System Initialization

First, KGC executes the Setupsys algorithm to gener-
ate system parameters. When ES/DU submits a registration
request with their real identities and the service they want
to subscribe to, KGC runs the SetupES /SetupDU algorithm to
generate corresponding parameters and then sends them to the
ES/DU via a secure channel. Finally, KGC stores the public
parameter about service into List, where the List is in the BC.
When SDi submits a registration request, KGC executes the
SetupSD algorithm to generate the corresponding parameters
and sends them to SDi via a secure channel. Finally, KGC
deploys smart contracts.

1) Setupsys(1
λ): On input a security parameter λ, this

algorithm first chooses a random number msk ∈ Z
∗
q as

the system master secret key, and computes Ppub = msk·
P as the system public key. Then, this algorithm selects
some hash functions H1 : G → {0, 1}∗, H2 : {0, 1}∗ ×
{0, 1}∗ × G × G → Z

∗
q, H3 : Z

∗
q × {0, 1}∗ → Z

∗
q,

H4 : {0, 1}∗×{0, 1}∗×{0, 1}∗×{0, 1}∗×G×G×G×G →
Z

∗
q, H5 : {0, 1}∗×Z

∗
q×G → Z

∗
q, H6 : Z∗

q×Z
∗
q×Z

∗
q → Z

∗
q,

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LIGHTWEIGHT AND SECURE DATA SHARING BASED ON PROXY RE-ENCRYPTION 14119

H7 : {0, 1}∗ ×G×G×G×G → Z
∗
q, H8 : {0, 1}∗ ×Z

∗
q ×

Z
∗
q ×G×G×G → Z

∗
q, and H9 : {0, 1}∗ ×{0, 1}∗ ×Z

∗
q ×

Z
∗
q × Z

∗
q × G × G × G → Z

∗
q. Finally, this algorithm

outputs {msk, Ppub, Hi(i = 1, . . . , 9)}. After executing
this algorithm, KGC keeps msk secret and publishes
public parameters {Ppub, Hi(i = 1, . . . , 9)} to the IIoT
system.

2) SetupES(IDES, α): On input ES’s real identity IDES ∈
{0, 1}∗ and service α ∈ {0, 1}∗, this algorithm first
chooses a random number skES ∈ Z

∗
q as the ES’s

secret key and calculates PKES = skES · P as the
ES’s public key. Subsequently, this algorithm selects a
random number k ∈ Z

∗
q as the encryption seed associated

with the service α, then it selects a random number
w ∈ Z

∗
q and computes W = w · P as the public

parameter associated with the service α. Finally, this
algorithm outputs {skES, PKES, k, w, W}. After executing
this algorithm, KGC sends {skES, PKES, k, w} to ES via
a secure channel and stores W in the List.

3) SetupDU (IDDU, α): On input the DU’s real identity
IDDU ∈ {0, 1}∗ and α, this algorithm first chooses
a random number skDU ∈ Z

∗
q as the DU’s secret

key and calculates PKDU = skDU · P as the DU’s
public key. Then, based on the service α, this algorithm
chooses w for the DU. Finally, this algorithm outputs
{skDU, PKDU, w}. After executing this algorithm, KGC
sends {skDU, PKDU, w} to DU via a secure channel.

4) SetupSD(msk, IDES, RIDi): On input SDi’s real identity
RIDi ∈ {0, 1}∗, msk and IDES, this algorithm chooses
a random number ri ∈ Z

∗
q and calculates PIDi =

RIDi ⊕ H1(ri · Ppub) as the SDi’s pseudonym. Then,
this algorithm computes si = H2(PIDi, VPi, PKi, PKES),
where PKi = ri · P, VPi is the validity period of
PIDi. Subsequently, this algorithm computes ski =
ri + msk · si as the secret key of SDi. Finally, this
algorithm outputs {PIDi, ski, PKi, VPi}. After executing
this algorithm, KGC sends {PIDi, ski, PKi, VPi} to SDi

via a secure channel and sends {PIDi, VPi} to ES.
Remark 1: To ensure the anonymity and un-linkability of the

original data, an SD is assigned many pseudonyms. And every
once in a while, the SD will use another new pseudonym.

B. Original Data Encryption and Signing

In this phase, assuming that the service is α, ES first runs
the AKGen algorithm to generate the assisted public/secret
key pair and sends the assisted public key to SD. Subsequently,
SD runs the Encrypt−I algorithm to encrypt the original data
and executes the Sign algorithm to sign the ciphertext. Finally,
SD sends the signed message to ES.

1) AKGen(k, T): On input k and time period T , this algo-
rithm computes an assisted secret key ask = H3(k, T)

and assisted public key APK = ask · P. Finally, this
algorithm outputs {ask, APK}. After executing this algo-
rithm, ES sends APK to SDi.

2) Encrypt − I(mi, APK): On input original data mi ∈
{0, 1}∗ and APK, this algorithm chooses a random num-
ber ui ∈ Z

∗
q. Then, this algorithm calculates ciphertext

ci = mi ⊕ H1(ui · APK) and outputs {ui, ci}.

3) Sign − I(ci, ui, ski, PIDi, PKi, VPi, PKES, APK, tsi):
On input {ci, ui, ski, PIDi, PKi, VPi, PKES, APK} and
current timestamps tsi, this algorithm first computes
Ui = ui · P and s∗

i = H4(ci, PIDi, VPi, tsi, Ui, PKi,

PKES, APK). Then, the algorithm computes signature
σi = ski + ui · s∗

i . Finally, this algorithm outputs
{σi, Ui}. After executing this algorithm, SDi sends δi =
(σi, ci, Ui, PIDi, PKi, APK, tsi) to ES.

C. Message Verification

Upon receiving the final message δi = (σi, ci, Ui, PIDi,

PKi, APK, tsi) from SD, ES first checks whether tsi is fresh.
If not, the final message δi is discarded. Then, ES checks
whether the VPi corresponding to PIDi is valid. If not, ES
discards δi. Subsequently, ES classifies the final messages
according to services. Assume there are n final messages cor-
responding to α, which are (σ1, c1, U1, PID1, PK1, APK, ts1),
(σ2, c2, U2, PID2, PK2, APK, ts2), . . . , (σn, cn, Un, PIDn,

PKn, APK, tsn). Finally, ES executes the Verify algorithm to
verify the message.

1) Verify(σi, ci, Ui, PIDi, PKi, VPi, PKES, APK, tsi): On
input (σ1, c1, U1, PID1, PK1, VP1, PKES, APK, ts1),
(σ2, c2, U2, PID2, PK2, VP2, PKES, APK, ts2), . . .,
(σn, cn, Un, PIDn, PKn, VPn, PKES, APK, tsn), this
algorithm computes si = H2(PIDi, VPi, PKi, PKES)

and s∗
i = H4(ci, PIDi, VPi, tsi, Ui, PKi, PKES, APK).

Subsequently, to ensure nonrepudiation, we use the small
exponential test technique [38]. Therefore, the algorithm
chooses a vector v = {v1, v2, . . . , vn} and verifies the
batch data by checking the following equation:(

n∑
i=1

(vi · σi)

)
· P =

n∑
i=1

(vi · PKi)

+
(

n∑
i=1

(vi · si)

)
· Ppub

+
n∑

i=1

(
vi · s∗

i · Ui
)
. (1)

If the equation holds, this algorithm outputs 1; other-
wise, outputs 0.

The correctness (1) is as follows:(
n∑

i=1

(vi · σi)

)
· P =

n∑
i=1

(
vi · (ski + ui · s∗

i)
) · P

=
n∑

i=1

(
vi · ((ri + msk · si) + ui · s∗

i)
) · P

=
n∑

i=1

(
vi · ((ri · P + si · msk · P) + s∗

i · ui · P)
)

=
n∑

i=1

(
vi · ((PKi + si · Ppub) + s∗

i · Ui)
)

=
n∑

i=1

(vi · PKi) +
(

n∑
i=1

(vi · si)

)
Ppub +

n∑
i=1

(
vi · s∗

i · Ui
)
. (2)

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

14120 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

D. Packaged Data Generation

After the verification, ES packages the valid data by
computing sd = (U1||c1)||(U2||c2)|| . . . ||(Un||cn), then the ES
stores the packaged data in CS and generates the packaged
data index index. Subsequently, ES executes the Encrypt −
II algorithm to generate ciphertext kES and corresponding
assisted parameters {h, d, hA, sA}.

1) Encrypt − II(ask, T, sd, w, W, k, index, PKES): On input
(ask, T, sd, w, W, k, PKES) and packaged data index
index, this algorithm computes h = H5(sd, ask, W).
Then, this algorithm calculates d = H6(ask, w, k),
D = d · P, and kES = (ask||index) ⊕ H1(d ·
PKES). Subsequently, this algorithm computes hA =
H8(index, ask, h, PKES, D, W) and sA = skES + d · hA.
Finally, this algorithm outputs {h, d, kES, hA, sA}.

E. Storage and Access Authentication

When ES wants to store data to BC, it first executes the
Sign−II algorithm to generate signature σupload and sends the
storage request sr = (σupload, PKES, W, T, h, kES, hA, sA, Xi)

to BC. Once receives the sr, BC checks whether W exists
in the List. If it exists, BC executes the Test − I algorithm
to determine whether the storage request is valid. If so, BC
stores the metadata metadata = (PKES, W, T, h, kES, hA, sA).
When DU wants to access packaged data, it first executes the
Sign−III algorithms to generate signature σdownload and sends
the access request ar = (σdownload, PKES, PKDU, T, W, Yi) to
BC. Once receives the ar, BC checks whether W exists in
the List. If it exists, BC executes the Test − II algorithm to
determine whether the access request is valid. If so, BC sends
the corresponding request {W, T, PKDU} to the ES.

1) Sign − II(skES, w, PKES, W, h, kES, hA, sA, T): On input
(skES, w, PKES, W, h, kES, hA, sA, T), the algorithm
selects a random number xi ∈ Z

∗
q, computes signature

σupload = skES+w+xi·H9(T, kES, h, hA, sA, PKES, W, Xi)

and outputs the signature σupload and Xi, where Xi =
xi · P.

2) Test−I(σupload, PKES, W, T, h, kES, hA, sA, Xi): On input
(σupload, PKES, W, T, h, kES, hA, sA, Xi), this algorithm
checks whether the following equation holds:

σupload · P = PKES + W

+ H9(T, kES, h, hA, sA, PKES, W, Xi) · Xi. (3)

If holds, this algorithm returns 1; otherwise, returns 0.
3) Sign − III(skDU, T, PKDU, PKES, w, W): On input

(skDU, T, PKDU, PKES, w, W), the algorithm selects a
random number yi ∈ Z

∗
q, computes signature σdownload =

skDU + w + yi · H7(T, PKDU, PKES, W, Yi) and outputs
the signature σdownload and Yi, where Yi = yi · P.

4) Test − II(σdownload, PKES, PKDU, T, W, Yi): On input
(σdownload, PKES, PKDU, T, W, Yi), this algorithm
checks whether the following equation holds:

σdownload · P = PKDU + W

+ H7(T, PKDU, PKES, W, Yi) · Yi. (4)

If holds, this algorithm returns 1; otherwise, returns 0.
Remark 2: The blockchain has limited throughput and is

difficult to store large-scale data. If many SDs interact directly

with the blockchain and store data, it may impose a huge
storage burden and operational latency on the blockchain.
In the proposed scheme, ES packages data from SDs and
stores them in the CS. Then, the ES stores the metadata
corresponding to packaged data in the BC. On the one
hand, the data packaging mechanism reduces the number of
interactions between ES and BC significantly. If there is no
packing mechanism, the number of interactions between ES
and BC increases with the number of original data. On the
other hand, the length of metadata is shorter than the length of
packaged data. BC only stores metadata rather than packaged
data, effectively reducing storage pressure.

F. Re-Encryption Key Generation and Re-Encryption

ES first chooses d based on {W, T} and then runs
the ReKeyGen algorithm to get the re-encryption key rk.
Subsequently, ES sends rk to BC. Once BC receives rk, it runs
the ReEncrypt algorithm to get ciphertext kDU . Finally, BC
sends access response {kDU, sA, hA, h} to DU.

1) ReKeyGen(d, PKES, PKDU): On input (d, PKES, PKDU),
this algorithm computes re-encryption key rk = H1(d ·
PKES) ⊕ H1(d · PKDU) and then outputs the rk.

2) ReEncrypt(kES, rk): On input (kES, rk), this algorithm
computes kDU = kES ⊕ rk and then outputs it.

G. Re-Decryption and Decryption

After receiving the access response from BC, DU first
runs the ReDecrypt algorithm to obtain ask and index, then
queries the packaged data sd through index, and finally runs
the Decrypt algorithm to obtain the original data mi.

1) ReDecrypt(skDU, kDU, PKES, sA, hA, h, W): On input
(skDU, kDU, PKES, sA, hA, W), this algorithm computes
D = (sA · P − PKES)/hA. Then, this algorithm cal-
culates ask||index = kDU ⊕ H1(skDU · D). Finally,
this algorithm checks whether the equation hA =
H8(index, ask, h, PKES, D, W) holds, if it does, it outputs
ask and index. Otherwise, it outputs ⊥.

2) Decrypt(h, sd, ask, W): On input (h, sd, ask, W), this
algorithm first checks whether the equation h =
H5(sd, ask, W) holds. If not, it proves that the packaged
data has been tampered with and this algorithm outputs
⊥. Otherwise, this algorithm computes ci ⊕ H1(ask · Ui)

to obtain the original data mi and outputs it.

VI. SECURITY PROOF AND ANALYSIS

The integrity of messages sent by SD is based on the
DL problem. The integrity of packaged data is based on the
collision resistance of the hash function. The confidentiality
of original data, assisted secret key, and packaged data index
relies on the CDH problem and the collision resistance of
the hash function. Therefore, the way of proving the original
data confidentiality is similar to the way of proving the
assisted secret key and packaged data index confidentiality.
For convenience, we focus on the security proof of assisted
secret key and packaged data index confidentiality. We define
a ciphertext indistinguishability game, which is an interaction
between the challenger C and the adversary A.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LIGHTWEIGHT AND SECURE DATA SHARING BASED ON PROXY RE-ENCRYPTION 14121

A. Security Proof

In the proof, we use m = (ask||index) to represent the
plaintext m. The ciphertext indistinguishability game performs
as follows.

1) Setup: The challenger C first executes the Setupsys algo-
rithm to generate system parameters. Then, it runs SetupES and
SetupDU algorithms to generate the corresponding parameters
{skES, PKES, k, w} and {skDU, PKDU, w}, respectively. Finally,
C sends public system parameters to A.

2) Phase 1: The adversary A adaptive launches some
queries to C as the following oracle.

1) Ciphertext oracle O: Given a plaintext message m, the
oracle executes the Encrypt − II algorithm to generate
the ciphertext kES.

3) Challenge: A selects two plaintext message (m0, m1)

and sends them to C. The C chooses a random bit c ∈ {0, 1}
and then executes the Encrypt − II algorithm to generate
the corresponding ciphertext {kES, hA, sA}. Finally, C sends
{kES, hA, sA, PKES} to A.

4) Phase 2: The adversary A can launch queries to the O.
Noting that A can not submit m0 or m1 to the oracle O.

5) Guess: A outputs a bit c′ ∈ {0, 1}. If c′ = c, then the A
wins the game.

The A’s advantage winning the above game is defined as

AdvIND
A (λ) =

∣∣∣∣Pr[c′ = c] − 1

2

∣∣∣∣.
6) Theorem 1: In the random oracle model, the proposed

scheme can achieve ciphertext indistinguishability if the solu-
tion to the CDH problem is negligible and the hash function
is collision resistant.

7) Proof: We demonstrate the ciphertext indistinguisha-
bility through a series of related games. In the last game,
we prove that the ciphertext and plaintext messages are
independent.

Game 0: The game is the same as the ciphertext
indistinguishability game. The challenger C first gener-
ates system parameters {P, H1, H3, H5, H6, H8} and two
public/secret key pairs (PKES = skES · P, skES) and
(PKDU = skDU · P, skDU). Then, C publishes the public
data (P, H1, H3, H5, H6, H8, PKES, PKDU) and keeps secret
keys (skES, skDU). To response the ciphertext oracle query,
for m = (ask||index), C computes h = H5(sd, ask, W), d =
H6(ask, w, k), D = d · P, and ask = H3(k, T). Then, C
generates the ciphertext kES = m⊕H1(d ·PKES) and computes
hA = H8(index, ask, h, PKES, D, W), sA = skES + d · hA. This
process simulates A’s ability to require the corresponding
ciphertext. After the above series of queries, A guesses the
challenge ciphertext and finally wins this game with the
advantage is

AdvGame0
A (λ) = AdvIND

A (λ).

Game 1: The game is the same as Game 0 except it uses a
secure hash function H1. We model the hash function as the
random oracle. For the H1 query, C presets a map MapH1 .
When A makes an H1 query with < x >, C checks whether the
MapH1 has the key < x >. If so, C returns the corresponding
value to A. Otherwise, C random selects a value y and sets
MapH1(< x >) = y. Because the hash function is secure, it

is indistinguishable between Game 1 and the above game. A
wins this game with the advantage is

AdvGame1
A (λ) = AdvGame0

A (λ).

Game 2: The game is similar to Game 1, but instead of
calculating kES = m ⊕ H1(d · PKES) to get the corresponding
ciphertext, this game selects a random string S ∈ {0, 1}∗ and
then calculates k′

ES = m⊕S to get the corresponding ciphertext
k′

ES. In Game 2, given a CDH problem instance {P, skES ·P, d ·
P}. The adversary A does not know (skES, d) and cannot solve
the CDH problem with nonnegligible probability, so it cannot
distinguish between k′

ES and kES. Therefore, A wins this game
with the advantage is

|AdvGame2
A (λ) − AdvGame1

A (λ)| ≤ AdvCDH
A (λ),

where the AdvCDH
A (λ) indicates the advantage of A solves

the CDH problem within polynomial time. Solving the CDH
problem is hard, so the AdvCDH

A (λ) is negligible.
Game 3: The game is similar to Game 2, but does

not obtain (sA, kES) by computing sA = skES + d ·
H8(index, ask, h, PKES, D, W) and kES = m ⊕ S. Instead, the
challenger C randomly chooses a number s′

A ∈ Z
∗
q and a string

k
′′
ES ∈ {0, 1}∗. On the one hand, the generation of sA needs

some random numbers (e.g., k and ω) and the hash function is
collision resistant. Therefore, in the view of A, sA and s′

A are
indistinguishable. On the other hand, S is randomness, so in
the view of A, k

′′
ES and k′

ES are indistinguishable. In summary,
the A wins this game with the advantage is

AdvGame3
A (λ) = AdvGame2

A (λ).

Through the above game, we find that the challenge ciphertext
is completely independent of the plaintext mc, so the advantage
of A winning Game 3 is

AdvGame3
A (λ) = |(1/2) − (1/2)| = 0

and we can obtain

AdvIND
A (λ) ≤ AdvCDH

A (λ)

according to Definition 2, we know that the advantage
AdvCDH

A (λ) is negligible. Therefore, under the random oracle
model, our proposed scheme can satisfy the confidentiality of
assisted secret key and packaged data index.

B. Security Analysis

1) Confidentiality: On the one hand, before sending the
original data, SD executes the Encrypt−I algorithm to encrypt
the original data, and the ciphertext can only be decrypted by
legitimate DUs. On the other hand, assisted secret key and
packaged data index are encrypted by ES, and only authorized
DUs can execute the ReDecrypt algorithm to obtain them.
Therefore, our scheme can ensure data confidentiality.

2) Integrity: On the one hand, our scheme can guarantee
the integrity of messages sent by SD because solving the
DL problem is hard. Hence, the ES can check the message
integrity by verifying whether δi · P = PKi + si · Ppub +
s∗

i · Ui holds. On the other hand, our scheme can ensure
the integrity of packaged data because the hash function is
collision resistant. Hence, the DU can check the integrity of

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

14122 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

TABLE II
COMPARISON OF SECURITY AND FUNCTIONALITY FEATURES

the packaged data by verifying whether the equation h =
H5(sd, ask, W) holds.

3) Anonymity: In the proposed scheme, SD hides its real
identity RIDi in the pseudonym PIDi, where PIDi = RIDi ⊕
H1(ri · Ppub). To obtain the RIDi from PIDi, the malicious
attacks need to compute ri · msk · P from Ri = ri · P and
Ppub = msk · P. However, solving the CDH problem is hard,
so our scheme can guarantee data anonymity.

C. Comparison of Security and Functionality Features

From Table II, we can see that our proposed scheme has
advantages over other related schemes [19], [20], [21].

VII. PERFORMANCE EVALUATION

A. Experimental Settings

1) Related Schemes Setting: To make the performance
evaluation fairer, we introduce three other blockchain-based
data-sharing schemes into the data-sharing framework we
considered. The specific descriptions are as follows.

1) In Manzoor et al.’s scheme [20], SD generates original
data and packaged data. CS stores the packaged data,
and BC performs proxy re-encryption operations.

2) In Chen et al.’s scheme [21], SD generates original data
and packaged data. BC stores the packaged data and
performs re-encryption operations.

3) In Lu et al.’s scheme [19], SD generates original data
and packaged data. BC performs proxy re-encryption
and CS stores the packaged data.

2) Experimental Environment Setting: We use the Miracl
Core [39] cryptography library and choose the BLS12381 type
curve, which achieves the security of 128 bits. ES and DU
operations are executed on a PC running Ubuntu 18.04.3 with
an Intel Core i5-7500 CPU @3.4 GHz and 16-GB RAM, while
SD operations are performed on a Raspberry Pi 4 running
Debian GNU/Linux 11 with a 1.5-GHz CPU and 4-GB RAM.
We use hyperledger fabric [40] to build a blockchain platform
consisting of ten PCs. Each PC has an Intel Core i7-11700 CPU
@2.50 GHz and 16-GB RAM, all running Ubuntu 18.04.3.
One PC serves as the client application node, one serves as
the orderer node, and the remaining eight serve as peer nodes.

B. Computation Cost Analysis

1) Theoretical Analysis: We set up a total of n SDs
subscribing to the same service and consider the following
time-consuming operations.

1) sm1: A scale multiplication operation x · P1, where x ∈
Z

∗
q and P1 ∈ G1.

2) sm2: A scale multiplication operation x · P2, where x ∈
Z

∗
q and P2 ∈ G2.

3) ge1: An exponential operation Px
1, where x ∈ Z

∗
q and

P1 ∈ G1.
4) ge2: An exponential operation Px

2, where x ∈ Z
∗
q and

P2 ∈ G2.
5) bp: A bilinear pairing operation e(g1, g2), where g1 ∈

G1 and g2 ∈ G2.
6) get: An exponential operation Px

t , where x ∈ Z
∗
q and

Pt ∈ GT .
In our scheme, SD needs 1sm1 to encrypt the original

data and 1sm1 to sign the ciphertext, so the total time-
consuming operations are 2sm1. ES requires (n + 2)sm1 for
batch verification, 2sm1 when generating packaged data, 1sm1
when generating a storage request, and 2sm1 when generating
re-encryption keys, so the total time-consuming operations
performed by ES are (n + 7)sm1. For BC, it mainly executes
Test− I and Test− II algorithms, so the total time-consuming
operations required are 4sm1. DU needs 1sm1 to execute the
Sign − III algorithm, 3sm1 to execute the ReDecrypt algo-
rithm, and nsm1 to execute the Decrypt algorithm. Therefore,
the total time-consuming operations required by the DU are
(n + 4)sm1.

We calculate the time-consuming operations for other
schemes using the same method, and the results are shown
in Table III. In our scheme, the blockchain needs to perform
one storage authentication, one proxy re-encryption, and one
access authentication regardless of the number of SDs. In [20],
the blockchain needs to execute n proxy re-encryption. In [19],
the blockchain needs to perform n storage authentications, n
proxy re-encryption, and one access authentication. In [21],
the blockchain needs to perform n access authentications and
n proxy re-encryption.

2) Off-Chain Simulation Result: In Fig. 3(a), we can see
that in our scheme, the computation overhead of SD is about
2.745 ms when the number of SDs is 1. The computational
cost of SD remains relatively constant even as the number of
SDs increases. Furthermore, it is evident that our proposed
scheme incurs the lowest computational overhead. When the
number of SDs is 1, we obtain the computational overhead
of SD in our scheme is 2.745 ms, in [20] is 5.804 ms,
in [21] is 11.333 ms, and in [19] is 78.052 ms. Therefore,
the computational overhead of SD in our scheme is about
2.745/5.804 ≈ 47.29% in [20], about 2.745/11.333 ≈
24.22% in [21], and about 2.745/78.052 ≈ 3.52% in [19].
The reason is that in [20], SD encrypts the original data and
generates the re-encryption key. The SD in [21] needs to
generate an authorization trapdoor. In [19], SD uses many
multiplication and pairing operations with high computational
overhead during the signing.

In Fig. 3(b), we can see that in [20] and [21], the ES
does not have any computational overhead. Because in both
schemes, the SD communicates directly with the BC. When
the number of SDs is 1, the computational overhead of ES
in our scheme is 2.585 ms, and in [19] is 0.274 ms. As the
number of SDs increases, our scheme and [19] will increase in
computational overhead. Although the computational overhead

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LIGHTWEIGHT AND SECURE DATA SHARING BASED ON PROXY RE-ENCRYPTION 14123

TABLE III
COMPARISON OF TIME-CONSUMING CRYPTOGRAPHIC OPERATIONS

Fig. 3. Off-chain computation cost comparison. (a) Computation cost on SD. (b) Computation cost on ES. (c) Computation cost on DU. (d) Total computation
cost.

of ES in our scheme is higher than that in [19], it can be seen
from Fig. 3(d) that the total computational overhead of our
proposed scheme is lower than that of [19]. Because in [19],
the ES is used to trace the SD, and more operations are
performed by the SD.

In Fig. 3(c), we can see that as the number of SDs increases,
the computational overhead of DU also increases. When the
number of SDs is 1, the computational overhead of DU is
1.590 ms in our scheme, is 5.510 ms in [21], is 0.871 ms
in [20], and is 21.831 ms in [19]. Although the computational
overhead of DU in our scheme is higher than that in [20] when
the number of SDs is 1, the computational overhead of DU
in our scheme is lower than that in [20] when the number of
SDs exceeds 2. The reason is that in our proposed scheme,
ES uses the packaging mechanism to generate packaged
data, DU only needs to verify the assisted secret key once,
and the operation involves only scalar multiplication on G1.
In [20], DU requires n data verification. In [21], DU needs
to generate an authorization trapdoor for each SD, so a total
of n authorization trapdoors need to be generated, which
brings a huge computation overhead. In [19], the opera-
tions performed by the DU contain many time-consuming
operations.

In Fig. 3(d), we find that when the number of SDs is 1,
the computational overhead of our scheme is higher than
that in [20]. Still, when the number of SDs exceeds 2, the
computational overhead in our scheme becomes lowest. As
the number of SDs increases, our scheme’s computational
overhead growth rate is minimized. When the number of
SDs is 300, the computation overhead of our scheme is
197.992 ms, it is about 197.992/267.116 ≈ 74.12% in [20],
is about 197.992/1655.046 ≈ 11.96% in [21], and is about
197.992/547.281 ≈ 36.18% in [19].

3) On-Chain Simulation Result: We consider the following
operations to evaluate the performance of various schemes in
the blockchain.

1) Our-SA: The storage authentication in our proposed
scheme.

2) Our-AA: The access authentication in our proposed
scheme.

3) Chen-AA: The access authentication in Chen et al.’s
scheme [21].

4) Lu-SA: The storage authentication in Lu et al.’s
scheme [19].

5) Lu-AA: The access authentication in Lu et al.’s
scheme [19].

6) Our-RE: The re-encryption in our proposed scheme.
7) Chen-RE: The re-encryption in Chen et al.’s

scheme [21].
8) Lu-RE: The re-encryption in Lu et al.’s scheme [19].
9) Manzoor-RE: The re-encryption in Manzoor et al.’s

scheme [20].
10) Write: The write operation.
11) Query: The query operation.
First, from Fig. 4(a), we can see that when the send rate

is within 180 transactions per second (TPS), the time delay
of Our-SA fluctuates insignificantly, which is about 0.08 s.
When the send rate exceeds 180 TPS, the time delay starts
to rise significantly, and when the send rate reaches 330 TPS,
the time delay is 32.39 s. In Fig. 4(a), we find that Our-AA
has the same trend of latency variation as Our-SA, which is
due to the fact that in our scheme, the storage and access
authentication takes the same time-consuming operations, both
being 2sm1. Second, we find that when the send rates are the
same, Chen-AA, Lu-SA, and Lu-AA have higher time delays
than in Our-SA and Our-AA. For example, when the send rate
is 1 TPS, the time required for Our-SA is equal to that required
for Our-AA, 0.04-s less than Chen-AA, 0.25-s less than Lu-
SA, and 0.24-s less than Lu-AA. In addition, as the send rate
increases, the delay for Chen-AA, Lu-SA, and Lu-AA increases,
and the growth rate is greater than that of Our-SA and Our-AA.
This is because there are more time-consuming operations in
Chen-AA, Lu-SA, and Lu-AA.

From Fig. 4(b), we can see that as the send rate increases,
the throughput of executing Our-SA and Our-AA increases
accordingly. When the send rate reaches 210, their throughput

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

14124 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Fig. 4. On-chain performance comparison. (a) Time latency of storage and access authentication. (b) Throughput of storage and access authentication.
(c) Time latency of proxy re-encryption. (d) Throughput of proxy re-encryption. (e) Time latency between write and query. (f) Throughput between write and
query.

gradually reaches saturation. Also, we find that the throughput
of running Chen-AA, Lu-SA, and Lu-AA reaches saturation
faster than executing Our-SA and Our-AA. This is because
there are time-consuming operations in Chen-AA, Lu-SA, and
Lu-AA, which will consume the resources of the blockchain
platform more. It is worth noting that when the send rate
reaches around 330 TPS, the system throughput for executing
Chen-AA, Lu-SA, and Lu-AA is higher than that for executing
Our-SA and Our-AA. By observing the experimental results,
we find that when the sending rate is 330 TPS, the percentage
of failed transactions to the total transactions is 0%, 0%, 7.5%,
98.6%, and 97.9% when executing Our-SA, Our-AA, Chen-AA,
Lu-SA, and Lu-AA, respectively. It means that the blockchain
platform has limited resources and cannot successfully process
Chen-AA, Lu-SA, and Lu-AA in a timely manner.

Combining Fig. 4(c) and (d), we find that the time latency
and throughput of the four re-encryption operations are close.
From Fig. 4(c), we can see that when the send rate is within
180 TPS, all four proxy re-encryption latencies are at a low
level. When the send rate exceeds 180 TPS, the time of the
four re-encryption operations starts to rise significantly. When
the send rate is 330 TPS, the time of executing Our-RE is
34.44 s, Chen-RE is 34.09 s, Lu-RE is 34.81 s, and Manzoor-
RE is 41.09 s. From Fig. 4(d), we find that the throughput
of performing Our-RE, Chen-RE, Lu-RE, and Manzoor-RE
increases as the send rate increases, and the throughput of
performing these four operations begins to saturate when the
send rate exceeds 210 TPS.

Write and query operations are involved in three other
related schemes and our scheme. After testing, the results are
shown in Fig. 4(e) and (f). With these two figures, we find
that write operations are more time consuming than query
operations, and the throughput gradually reaches saturation
when the send rate exceeds 210 TPS. In addition, we find
that the query operation latency stays low level (0.01 s) when
the send rate increases. This is because each time the data is
queried, the peer node retrieves the data from the local copy.

Insight: To support more services, we need to pay attention
to the following two points.

1) Operations in the blockchain need to be lightweight,
which can increase the throughput while ensuring that
transactions are executed successfully.

2) Entities should minimize their interactions with the
blockchain, thus saving the resources of the blockchain.

Through experimental analysis, we find that in our scheme,
operations in the blockchain are lightweight. In addition, the
scheme we design supports data packaging, which reduces
the interaction number between ES/DU and blockchain.
Therefore, our scheme is more suitable for IIoT environments
than other related schemes.

VIII. CONCLUSION

In this study, we aim to achieve efficient and secure data
sharing in a blockchain-enabled IIoT system. First, we design
a lightweight data-sharing scheme. In this scheme, we consider
storage and access authentication and combine them with
proxy re-encryption techniques to realize secure data sharing.
Second, To reduce the blockchain’s storage overhead and
computation overhead, the scheme achieves on-chain and
off-chain collaborative storage and supports data packaging.
Finally, the security analysis demonstrates that the proposed
scheme can satisfy the security requirements of the IIoT.
The performance evaluation results show that the proposed
scheme is feasible and suitable for blockchain-enabled IIoT
environments. In the future, we will design a practical data-
sharing scheme for mobile SDs.

ACKNOWLEDGMENT

The authors are very grateful to the anonymous referees for
their detailed comments and suggestions regarding this article.

REFERENCES

[1] Y. He et al., “Two-timescale resource allocation for automated networks
in IIoT,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7881–7896,
Oct. 2022.

[2] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in Industrial Internet of Things: Architecture, advances
and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2462–2488, 4th Quart., 2020.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: LIGHTWEIGHT AND SECURE DATA SHARING BASED ON PROXY RE-ENCRYPTION 14125

[3] F. Wang, J. Cui, Q. Zhang, D. He, C. Gu, and H. Zhong, “Blockchain-
based lightweight message authentication for edge-assisted cross-domain
Industrial Internet of Things,” IEEE Trans. Dependable Secure Comput.,
early access, Jun. 15, 2023, doi: 10.1109/TDSC.2023.3285800.

[4] L. Liu and W. Yu, “A D2D-based protocol for ultra-reliable wire-
less communications for industrial automation,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5045–5058, Aug. 2018.

[5] Y. Jiang, Y. Zhong, and X. Ge, “IIoT data sharing based on blockchain:
A multileader multifollower Stackelberg game approach,” IEEE Internet
Things J., vol. 9, no. 6, pp. 4396–4410, Mar. 2022.

[6] Q. Li, J. Chen, M. Cheffena, and X. Shen, “Channel-aware latency tail
taming in industrial IoT,” IEEE Trans. Wireless Commun., vol. 22, no. 9,
pp. 6107–6123, Sep. 2023.

[7] C.-K. Chu, S. S. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng,
“Key-aggregate cryptosystem for scalable data sharing in cloud stor-
age,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 468–477,
Feb. 2014.

[8] J. Cui, J. Lu, H. Zhong, Q. Zhang, C. Gu, and L. Liu, “Parallel
key-insulated multiuser searchable encryption for Industrial Internet of
Things,” IEEE Trans. Ind. Informat., vol. 18, no. 7, pp. 4875–4883,
Jul. 2022.

[9] C. Huang, D. Liu, J. Ni, R. Lu, and X. Shen, “Achieving accountable
and efficient data sharing in Industrial Internet of Things,” IEEE Trans.
Ind. Informat., vol. 17, no. 2, pp. 1416–1427, Feb. 2021.

[10] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A survey of
proxy re-encryption for secure data sharing in cloud comput-
ing,” IEEE Trans. Services Comput., early access, Apr. 6, 2016,
doi: 10.1109/TSC.2016.2551238.

[11] J. Shen, H. Yang, P. Vijayakumar, and N. Kumar, “A privacy-preserving
and untraceable group data sharing scheme in cloud computing,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2198–2210,
Jul./Aug. 2022.

[12] B. Cui, Z. Liu, and L. Wang, “Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,” IEEE Trans. Comput.,
vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[13] S. Xu, G. Yang, Y. Mu, and R. H. Deng, “Secure fine-grained access
control and data sharing for dynamic groups in the cloud,” IEEE Trans.
Inf. Forensics Security, vol. 13, pp. 2101–2113, 2018.

[14] J. Cui, X. Zhang, H. Zhong, J. Zhang, and L. Liu, “Extensible
conditional privacy protection authentication scheme for secure vehicular
networks in a multi-cloud environment,” IEEE Trans. Inf. Forensics
Security, vol. 15, pp. 1654–1667, 2020.

[15] F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. M. Leung, “Adaptive
resource allocation in future wireless networks with blockchain and
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 1689–1703, Mar. 2020.

[16] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge
computing for secure and scalable IIoT critical infrastructures in industry
4.0,” IEEE Internet Things J., vol. 8, no. 4, pp. 2300–2317, Feb. 2021.

[17] J. Sunny, N. Undralla, and V. M. Pillai, “Supply chain transparency
through blockchain-based traceability: An overview with demonstra-
tion,” Comput. Ind. Eng., vol. 150, Dec. 2020, Art. no. 106895.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0360835220305829

[18] W. Sun, J. Liu, Y. Yue, and P. Wang, “Joint resource allocation and
incentive design for blockchain-based mobile edge computing,” IEEE
Trans. Wireless Commun., vol. 19, no. 9, pp. 6050–6064, Sep. 2020.

[19] J. Lu, J. Shen, P. Vijayakumar, and B. B. Gupta, “Blockchain-based
secure data storage protocol for sensors in the Industrial Internet of
Things,” IEEE Trans. Ind. Informat., vol. 18, no. 8, pp. 5422–5431,
Aug. 2022.

[20] A. Manzoor, A. Braeken, S. S. Kanhere, M. Ylianttila, and
M. Liyanage, “Proxy re-encryption enabled secure and anonymous
IoT data sharing platform based on blockchain,” J. Netw. Comput.
Appl., vol. 176, Feb. 2021, Art. no. 102917. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804520303763

[21] B. Chen, D. He, N. Kumar, H. Wang, and K.-K. R. Choo, “A
blockchain-based proxy re-encryption with equality test for vehicular
communication systems,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 3,
pp. 2048–2059, Jul.–Sep. 2021.

[22] A. Hari, M. Kodialam, and T. V. Lakshman, “ACCEL: Accelerating
the Bitcoin blockchain for high-throughput, low-latency applications,” in
Proc. IEEE IEEE Conf. Comput. Commun., 2019, pp. 2368–2376.

[23] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey
on the scalability of blockchain systems,” IEEE Netw., vol. 33, no. 5,
pp. 166–173, Sep./Oct. 2019.

[24] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 18, no. 1,
pp. 695–708, Jan. 2019.

[25] K. Miyachi and T. K. Mackey, “hOCBS: A privacy-preserving
blockchain framework for healthcare data leveraging an on-chain
and off-chain system design,” Inf. Process. Manage., vol. 58, no. 3,
2021, Art. no. 102535. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0306457321000431

[26] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology, R. Cramer, Ed. Berlin, Germany: Springer, 2005,
pp. 457–473.

[27] Z. Kang, J. Li, J. Shen, J. Han, Y. Zuo, and Y. Zhang, “TFS-
ABS: Traceable and forward-secure attribute-based signature scheme
with constant-size,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9,
pp. 9514–9530, Sep. 2023.

[28] J. Li, Y. Wang, Y. Zhang, and J. Han, “Full verifiability for outsourced
decryption in attribute based encryption,” IEEE Trans. Services Comput.,
vol. 13, no. 3, pp. 478–487, May/Jun. 2020.

[29] J. Ning, X. Huang, W. Susilo, K. Liang, X. Liu, and Y. Zhang,
“Dual access control for cloud-based data storage and sharing,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 1036–1048,
Mar./Apr. 2022.

[30] Y. Guo, Z. Lu, H. Ge, and J. Li, “Revocable blockchain-aided attribute-
based encryption with escrow-free in cloud storage,” IEEE Trans.
Comput., vol. 72, no. 7, pp. 1901–1912, Jul. 2023.

[31] J. Li, Y. Zhang, J. Ning, X. Huang, G. S. Poh, and D. Wang,
“Attribute based encryption with privacy protection and accountability
for CloudIoT,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 762–773,
Apr.–Jun. 2022.

[32] S. Kim and I. Lee, “IoT device security based on proxy re-encryption,”
J. Ambient Intell. Humanized Comput., vol. 9, pp. 1267–1273,
Aug. 2018.

[33] L. Xu, X. Wu, and X. Zhang, CL-PRE: A Certificateless Proxy
Re-Encryption Scheme for Secure Data Sharing With Public Cloud.
New York, NY, USA: Assoc. Comput. Mach., 2012. [Online]. Available:
https://doi.org/10.1145/2414456.2414507

[34] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, and L. Fang, “A verifiable
and fair attribute-based proxy re-encryption scheme for data sharing
in clouds,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 5,
pp. 2907–2919, Sep./Oct. 2022.

[35] M. Su, B. Zhou, A. Fu, Y. Yu, and G. Zhang, “PRTA:
A proxy re-encryption based trusted authorization scheme for
nodes on CloudIoT,” Inf. Sci., vol. 527, pp. 533–547, Jul. 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0020025519300660

[36] K. Wang, Y. Yan, S. Guo, X. Wei, and S. Shao, “On-chain and off-chain
collaborative management system based on consortium blockchain,” in
Advances in Artificial Intelligence Security, X. Sun, X. Zhang,
Z. Xia, and E. Bertino, Eds. Cham, Switzerland: Springer Int., 2021,
pp. 172–187.

[37] K. O.-B. O. Agyekum, Q. Xia, E. B. Sifah, C. N. A. Cobblah, H. Xia,
and J. Gao, “A proxy re-encryption approach to secure data sharing in
the Internet of Things based on blockchain,” IEEE Syst. J., vol. 16, no. 1,
pp. 1685–1696, Mar. 2022.

[38] S.-J. Horng et al., “B-SPECS+: Batch verification for secure pseudony-
mous authentication in VANET,” IEEE Trans. Inf. Forensics Security,
vol. 8, pp. 1860–1875, 2013.

[39] “MIRACL core.” Dec. 2023. [Online]. Available: https://github.com/
miracl/core

[40] “Hyperledger.” 2023. [Online]. Available: https://github.com/hyperled
ger/fabric

Fengqun Wang is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology, Anhui University, Hefei, China.

His research interests include IoT security,
blockchain, and applied cryptography.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2023.3285800
http://dx.doi.org/10.1109/TSC.2016.2551238

14126 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Jie Cui (Senior Member, IEEE) was born in
Henan Province, China, in 1980. He received the
Ph.D. degree from the University of Science and
Technology of China, Hefei, China, in 2012.

He is currently a Professor and the Ph.D.
Supervisor with the School of Computer Science
and Technology, Anhui University, Hefei. He has
over 150 scientific publications in reputable jour-
nals (e.g., IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS

ON INFORMATION FORENSICS AND SECURITY,
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS

ON INDUSTRIAL ELECTRONICS, IEEE TRANSACTIONS ON CLOUD

COMPUTING, and IEEE TRANSACTIONS ON MULTIMEDIA), academic books
and international conferences. His current research interests include applied
cryptography, IoT security, vehicular ad hoc network, cloud computing
security, and software-defined networking.

Qingyang Zhang (Member, IEEE) was born in
Anhui Province, China, in 1992. He received the
B.Eng. degree and the Ph.D. degree in computer
science from Anhui University, Hefei, China, in
2021.

He is currently an Associate Professor with the
School of Computer Science and Technology, Anhui
University. His research interest includes edge com-
puting, computer systems, and security.

Debiao He (Member, IEEE) received the Ph.D.
degree in applied mathematics from the School
of Mathematics and Statistics, Wuhan University,
Wuhan, China, in 2009.

He is currently a Professor with the School of
Cyber Science and Engineering, Wuhan University.
He has published over 100 research papers in ref-
ereed international journals and conferences, such
as IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, and
Usenix Security Symposium. His main research interests include cryptography
and information security, in particular, cryptographic protocols.

Prof. He is the recipient of the 2018 IEEE Systems Journal Best Paper
Award and the 2019 IET Information Security Best Paper Award. He work
has been cited more than 10 000 times at Google Scholar. He is on the
editorial board of several international journals, such as Journal of Information
Security and Applications, Frontiers of Computer Science, and Human-centric
Computing and Information Sciences.

Chengjie Gu received the Ph.D. degree
from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2012.

From 2012 to 2017, he was an Innovation
Team Leader of the 38th Research Institute of
CETC and conducted research and development
in the communication and networking sector. He
is currently a President of Security Research
Institute in new H3C group. He is also studying
for postdoctoral fellowship at USTC. He is a high-
level Innovation Leader of Anhui province and a

Cybersecurity Expert of Zhejiang province in China. His research interest
includes network security and trusted network architecture.

Hong Zhong (Member, IEEE) was born in Anhui
Province, China, in 1965. She received the Ph.D.
degree in computer science from the University of
Science and Technology of China, Hefei, China, in
2005.

She is currently a Professor and the Ph.D.
Supervisor with the School of Computer Science
and Technology, Anhui University, Hefei.
She has over 200 scientific publications in
reputable journals (e.g., IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS

ON INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON

MULTIMEDIA, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, and IEEE TRANSACTIONS ON BIG DATA), academic
books and international conferences. Her research interests include applied
cryptography, IoT security, vehicular ad hoc network, cloud computing
security, and software-defined networking.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:24:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

