IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

16325

Efficient Blockchain-Based Mutual Authentication
and Session Key Agreement for
Cross-Domain IIoT

Jie Cui
Chengjie Gu

Abstract—Several studies have introduced edge computing
and blockchain into the Industrial Internet of Things (IIoT)
to satisfy the requirements of delay-sensitive applications and
support cross-domain authentication. Although there have been
many protocols to ensure the security and privacy of devices in
the IloT, existing protocols still suffer from problems. Updating
keys and pseudonyms of devices by a trusted third party
(e.g., certificate authority) will cause high communication and
computation overhead, especially when the number of devices
becomes much larger. Furthermore, an increasing number of
transactions also cause high-storage overhead on the blockchain.
Therefore, we propose a blockchain-based cross-domain authen-
tication protocol. Specifically, we propose a privacy-preserving
method based on pseudonyms that offloads the task of generating
pseudonyms from a trusted third party to edge servers to ensure
the conditional anonymity of the devices. The device is allowed to
request pseudonyms in bulk to reduce the number of transactions,
thus reducing the storage overhead on the blockchain. Security
analysis and experimental results demonstrate that our scheme
achieves an efficient tradeoff between security and efficiency.

Index Terms—Blockchain, cross-domain authentication, edge
computing, Industrial Internet of Things (IIoT), mutual
authentication.

I. INTRODUCTION

HE Internet of Things (IoT) [1], [2] connects people to
things and things to things anytime and anywhere through

Manuscript received 18 August 2023; revised 17 October 2023 and 4
December 2023; accepted 5 January 2024. Date of publication 9 January 2024;
date of current version 25 April 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 62272002, Grant
62202005, and Grant 62325209; in part by the Excellent Youth Foundation of
Anhui Scientific Committee under Grant 2108085J31; in part by the Natural
Science Foundation of Anhui Province, China, under Grant 2208085QF198;
and in part by the University Synergy Innovation Program of Anhui Province
under Grant GXXT-2022-049. (Corresponding author: Hong Zhong.)

Jie Cui, Yihu Zhu, Hong Zhong, and Qingyang Zhang are with the Key
Laboratory of Intelligent Computing and Signal Processing of Ministry of
Education, School of Computer Science and Technology, and the Anhui
Engineering Laboratory of IoT Security Technologies, Anhui University, Hefei
230039, China (e-mail: zhongh@ahu.edu.cn).

Chengjie Gu is with the School of Public Security and Emergency
Management, Anhui University of Science and Technology, Hefei 231131,
China, and also with the Security Research Institute, New H3C Group, Hefei
230088, China (e-mail: gcj@ustc.edu.cn).

Debiao He is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China, and also with the Shanghai Key Laboratory
of Privacy Preserving Computation, MatrixElements Technologies, Shanghai
201204, China (e-mail: hedebiao@163.com).

Digital Object Identifier 10.1109/JI0T.2024.3351892

, Senior Member, IEEE, Yihu Zhu, Hong Zhong™', Member, IEEE, Qingyang Zhang", Member, IEEE,
, and Debiao He

, Member, IEEE

the Internet connected devices embedded with sensors and
actuators [3]. Industrial Internet of Things (IloT) is applying
IoT in the industry [4]. The primary objective of the IIoT is to
improve product quality and efficiency and reduce production
costs by collecting and analyzing a large amount of data from
industrial sectors (e.g., factories). Using IloT, conventional
industries will eventually become intelligent.

In HoT systems, IIoT devices are resource-constrained,
and a massive amount of data gathered by the devices is
transmitted to the cloud server for storage and computation [5].
However, with the development of IIoT, the system scale is
becoming much larger, and conventional cloud-based IIoT
platforms cannot satisfy the demands for low-latency and
mission-critical tasks. For example, in a smart factory, the data
collected by devices can sometimes reach the level of GB
per second. If all the data are transmitted to the cloud for
processing and analysis, too many bandwidth resources will
be consumed, which can cause significant network congestion.
This, in turn, can result in latency problems that affect
the Quality of Service (QoS) for various production tasks.
Thus, the introduction of edge computing to support IIoT has
attracted the attention from both industries and academics.
As edge computing is near to end users, it can provide real-
time services and help devices perform computation-intensive
tasks. Although edge computing offers several advantages,
several challenges remain unresolved. Edge computing is
more vulnerable than cloud computing because of its inherent
characteristics, such as mobility and geolocation [6]. A fake
edge node can also impersonate a legitimate edge server (ES)
and connect to an IIoT device to access its data, threatening
its security and privacy. Therefore, designing a practical
security solution for edge-computing-based architectures is
vital. Mutual authentication is an effective measure to protect
communicators’ privacy and security before sending sensi-
tive information or requesting services. Several authentication
schemes [7], [8], [9] authenticate devices and ESs. However,
most of them rely on public key infrastructure (PKI) systems.
A trusted authority (TA) called certificate authority (CA) is
responsible for managing certificates or updating pseudonyms,
which can overburden the authority when the system scales
are vast. In addition, the smart device (SD) and server send
requests to the CA for identity information (e.g., public keys)
before authenticating each other. This may cause an extra
delay if there is already a burden on the CA to respond

2327-4662 (© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7258-3418
https://orcid.org/0000-0002-0392-9734
https://orcid.org/0000-0002-2600-6748
https://orcid.org/0009-0001-6597-168X
https://orcid.org/0000-0002-2446-7436

16326

to the authentication requests of many devices, which could
become a bottleneck [10]. Furthermore, most schemes do
not consider device mobility. For example, drones that detect
potential hazards in power systems can move to different
areas. Therefore, it is necessary to design an efficient cross-
domain authentication protocol to obtain timely information
and provide seamless services when SDs move to another edge
network.

The solutions to address cross-domain authentication can
be divided into two categories, centralized solutions and the
blockchain-based solutions. Centralized schemes rely heavily
on trust third party (e.g., CA). Therefore, to achieve cross-
domain authentication, it is necessary to verify the authenticity
of devices by issuing certificates. However, as the system
scales expands, certificate management becomes increasingly
complex, potentially burdening CA and leading to efficiency
issues. Blockchain acts as a distributed ledger with features,
such as transparency and tamper-proofing. Each blockchain
node needs to be verified before joining the network and
maintains an exact and complete copy of the ledger. The
destruction of a single node does not affect the integrity of
the entire ledger, significantly improving the data’s security
and solving the bottleneck problem. These nodes do not
trust each other, but they collaborate through a consensus
mechanism. Consequently, an increasing number of works
have tended to employ blockchain to assist cross-domain
authentication [11], [12], [13]. However, several challenges
remain to be resolved.

Although these blockchain-based schemes can achieve
cross-domain authentication and guarantee the privacy and
anonymity of devices, some unresolved problems remain.
When the temporary keys and pseudonyms of the devices
expire, they need to request new keys and pseudonyms from
the CA. According to the International Data Corporation [14],
connected IoT devices are expected to reach 41.6 billion
by 2025. Therefore, unpredictable pseudonym requests from
many devices impose huge computation and communication
burdens on the CA. In addition, devices’ public keys are
recorded on the blockchain in these schemes, which causes
enormous storage overhead. Yang et al. [15] designed a two-
phase pseudonym service that permits CA to offload the
pseudonym distribution task to roadside unit (RSU) proxies
to address these issues. This inspired us to let ESs generate
pseudonyms instead of the CA. To guarantee the privacy of
the device, such as the real identity, we cannot simply adopt
the method of generating pseudonyms by the CA because ESs
are always deemed semi-trusted entities. Several requirements
must be satisfied: 1) the device’s privacy must be protected
and 2) only one TA can track the real identity of a device.

To address these problems, we propose a blockchain-based
cross-domain authentication protocol. Specifically, we build
distributed trust among ESs through a blockchain to share
cross-domain information. Therefore, we can achieve mutual
cross-domain authentication without using a CA. In addition,
we design a pseudonym-based privacy-preserving scheme.
That is, CA offloads the task of distributing pseudonyms
to the ESs. In this way, the responsibility of generating
pseudonyms is taken over by ESs. And partial information

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

about pseudonyms is put on the blockchain for sharing, which
allows CA to revoke the devices when malicious behavior is
detected. This reduces the burden on the CA. Furthermore, not
complete pseudonyms are uploaded to the blockchain. Hence,
the number of transactions in the blockchain is reduced,
and the efficiency of updating keys is increased. The major
contributions of this article can be summarized as follows.

1) We design a mutual authentication scheme in IloT
using edge computing and blockchain, which can real-
ize the authentication between SDs and different ESs
to provide real-time services. At the same time, this
protocol achieves some properties, such as anonymity
and traceability.

2) To reduce the dependence on the CA, we design a
pseudonym-based method. Specifically, we utilize the
ESs to generate and distribute pseudonyms for the SDs
without the involvement of the CA. At the same time,
we reduce the storage overhead on the blockchain.

3) We conduct an informal security analysis and use an
automatic cryptographic protocol verification tool called
ProVerif to prove that our scheme is secure. And the
performance analysis demonstrates that our scheme gets
a tradeoff between security and efficiency.

The remainder of this article is structured as follows. Some
related works are presented in Section II. Section III provides
an introduction to relevant preliminary concepts. The system
model, security goals and attack model are presented in
Section IV. The details of our proposed scheme are described
in Section V. And Section VI shows the security analysis.
Section VII presents the performance evaluation. Finally,
Section VIII summarizes this article.

II. RELATED WORK

There are various solutions to achieve mutual authenti-
cation between a device and server, which can be broadly
categorized into two types. The first type is conventional
schemes that do not involve blockchain technology [16], [17],
[18], [19], [20]. These schemes usually employ techniques,
such as elliptic curve cryptography (ECC), edge comput-
ing, fog computing, and asymmetric encryption, to protect
system security and privacy. The second type is blockchain-
based schemes [21], [22], [23]. These schemes leverage the
properties of blockchain technology, such as transparency
and tamper-proofing, to facilitate key management and data
sharing. Moreover, as blockchain is decentralized in nature, it
can establish trust among different domains, enabling cross-
domain authentication.

First, we discuss the conventional schemes.
Rostampour et al. [24] presented a secure authentication
scheme for IoT edge devices. In this scheme, authors only
used ECC to implement the authentication process and they
examined their proposed scheme’s security via BAN logic and
Scyther tool. However, this protocol cannot reveal the unique
identity of an embedded device when malicious behavior is
detected. Rangwani and Om [25] proposed an ECC-based
secure user authentication scheme for cloud computing. This
scheme addresses some problems, such as denial-of-service

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

and stolen smart card, which are found in [26]. However,
it requires the cloud server to negotiate the symmetric key
with the SD and user in advance, without considering if the
key is updated. Alam and Kumar [27] presented an efficient
authentication scheme for IoT devices, which is based on
the elliptic curve discrete logarithm problem (ECDLP). The
authors used hash function and XOR function to reduce
computation cost. However, the authentication process of
cloud servers and users requires the involvement of TA,
which can be burdensome as the number of authentication
requirements increases. With the increasing demand for low
latency and QoS, the research focus has shifted from cloud
computing to edge computing.

Amore et al. [28] presented a privacy-preserving authen-
tication scheme for fog computing. However, the mutual
authentication between a fog user and fog server relies on a
list called SV, which is maintained by the registration authority
(RA). It should be noted that the cost of communication
involved in updating the list can be significantly high, and it
cannot resist stolen verifier attacks. Later, a lightweight and
privacy-preserving authentication scheme for edge computing
was proposed in [29]. However, we found that RC’s secret
key can be calculated by the user and server during the
registration phase. During the registration phase, the message
{SID,,, d,, r,} is sent to the user and the user can compute
drc = (SID, — ru)thl, where h,, dgrc denote the hash value
and RC’s private key, respectively. Jia et al. [30] proposed
an efficient identity-based anonymous authentication scheme
for edge computing, but the protocol does not achieve key
management (i.e., key update and key revoke) and lacks
conditional anonymity. Li et al. [31] proposed an anony-
mous authentication scheme for edge computing and the user
anonymity is fully protected. However, registration center
gets involved in the authentication process. Furthermore, the
identity-based schemes suffer from the problem of leaking the
privacy of devices, such as the real identity.

To provide conditional anonymity, group signature has been
introduced in many schemes. Chaum and Heyst [32] invented
the notion of group signature in 1991. It means that any mes-
sage signed by a group member can be verified using the group
public key, without exposing the real identity of the signer.
Huang et al. [33] proposed an efficient certificateless group
signature scheme for mobile edge computing. This scheme
can achieve some features, such as anonymity, unforgeability,
and traceability. However, group signature is known to have
high computation and communication overhead. Additionally,
it heavily relies on the group manager to achieve the key
update and revocation.

Later, blockchain is introduced to share public information
and achieve flexible key management. Wang et al. [6] proposed
a blockchain-based anonymous authentication scheme for
smart grid edge computing, where smart contract is utilized
to record public keys to achieve flexible key management.
However, the private keys of devices need to be updated
by RA regularly. Shen et al. [34] proposed a cross-domain
authentication method for IIoT based on blockchain. In
this scheme, blockchain is used to establish trust among
different domains, and the specific domain information is

16327

stored off-blockchain to eliminate the throughput bottleneck of
blockchain. Lin et al. [35] presented a blockchain-based condi-
tional privacy-preserving authentication scheme for vehicular
networks. In the designed scheme, the authors employed a
key derivation algorithm to get vehicles’ private keys and
the CA issues a certificate of corresponding public keys.
Panda et al. [36] presented a blockchain-based authentication
and key management protocol in distributed IoT using one-
way hash chains. However, the protocol does not achieve key
update and conditional anonymity. Zhang et al. [37] presented
a blockchain-based reliable and privacy-preserving authentica-
tion protocol for fog-based IoT devices. In this protocol, the
fog node (i.e., IoT device) sends multiple query requests to the
full blockchain node which consists of some fake queries and
one correct query. Thereby, the blockchain nodes are obfus-
cated from knowing which is the real request thus protecting
the privacy of the user. Yang et al. [38] proposed a blockchain-
based secure and lightweight authentication scheme for IoT.
In this scheme, a modular square root algorithm is used to
generate signatures effectively. Wang et al. [39] proposed
a cross-domain authentication scheme for IoT that utilizes
blockchain and dynamic accumulator. The proposed pro-
tocol transfers the authentication problem into a signature
transitivity problem by utilizing an accumulator and a stan-
dard digital signature scheme. Wang et al. [12] proposed
a blockchain-based authentication model of intelligent tele-
health systems with multiserver edge computing architecture.
The proposed scheme enables an authenticated server to
assist a user in authenticating another server to reduce
interactions.

In general, existing blockchain-based authentication
schemes still suffer from issues, such as low efficiency
in updating devices’ keys and pseudonyms, as well as
high-storage overhead on the blockchain. Thus, designing
a blockchain-based cross-domain authentication for edge-
computing-assisted IIoT remains challenging.

III. PRELIMINARIES

In this section, we introduce some relevant background
knowledge that will be used in our scheme, including
computational hardness assumptions and blockchain. Table I
provides an overview of all the notations used in this
article.

A. Computational Hardness Assumption

The security of our scheme is based on the following com-
putational hardness assumptions, i.e., elliptic curve discrete
logarithm (ECDL) and elliptic curve Diffie-Hellman (ECDH).

Let ZZ be a finite field, which is determined by the prime
number g. Let G be a cyclic additive group consisted of the
points on the elliptic curve and the point at infinity. Let P be
a generator of G.

1) ECDL: For a € ZZ, given P,aP € G, it is hard to

compute a.

2) ECDH: For a,b € Z}, given P,aP,bP € G, it is hard

to compute abP.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16328

TABLE I
NOTATIONS
Notations Descriptions
s The secret key of RA
Ppub The public key of RA
ES; The i-th Edge server
SD; The j-th Smart device
ID; The real identity of E.S;
ID; The real identity of SD;
T, The secret key of E.S;
PK; The public key of E.S;
w The long term private key of SD;
Q The token of SD;
Ti(i=1,..,4 Timestamp
TK Symmetric key
Erk() Symmetric encryption with TK
Dri() Symmetric decryption with TK
hi(i=1,...,6) Hash functions

B. Blockchain and Smart Contract

The blockchain (BC) is a decentralized database maintained
by peer-to-peer nodes. It uses cryptographic primitives (e.g.,
signature algorithm and one-way hash function) and consensus
mechanisms to ensure the integrity and consistency of data.
The full node has the entire ledger and is able to verify
whether the transaction is valid alone and upload data to the
blockchain network. The consortium blockchain is a type of
blockchain that consists of multiple parties that have reached
an agreement. The members of consortium blockchain do not
trust each other, but cooperate with each other to accomplish
tasks under the consensus mechanism. Therefore, we can
utilize consortium blockchain to assist the authentication in
the cross-domain environment.

The smart contract is a self-executing computer program
that automatically executes once conditions are met. Smart
contracts are deployed into the blockchain network in advance
and the content of the contract is open and transparent.
Authorized nodes can trigger smart contracts to manage data
by publishing transactions and query the data recorded on the
blockchain by submitting the parameters. In our scheme, the
blockchain is mainly used to establish trust among different
servers for sharing cross-domain information. The data on the
blockchain are immutable.

IV. MODELS AND SECURITY GOALS

In this section, we first introduce the system model for the
proposed scheme and then demonstrate the security goals and
attack model.

A. System Model

As illustrated in Fig. 1, our system consists of RA, ES, SD,

and blockchain (BC).

1) RA: The RA is a trust manager that generates system
parameters and distributes key materials to the corre-
sponding entities. Besides, it can utilize the blockchain
to record the public keys and related parameters of the
registered ESs and the identities of the revoked SDs.

2) ES: The ES is equipped with sufficient computation and
storage resources, and is responsible for providing data
analysis and services. Furthermore, it honestly follows

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Blockchain
(BC)

Registration Authority
(RA)

Transaction

=== L

<

c
ke
z 5
E z
¢ 2
o

Authentication

_
= i E $ Apply for pseudony
Edge Server Sma;tsg)ewce
(ES)

Fig. 1. System model.

the rules for generating pseudonyms for SDs. At the
same time, each ES can query public keys through the
blockchain and some high-reputation ESs, as blockchain
nodes, can upload information about pseudonyms to the
blockchain.

3) SD: The SD can be a terminal device (e.g., a drone) with
limited computation and storage resources. It needs to
connect with ESs to acquire specific services after the
successful mutual authentication with ESs.

4) BC: The BC is a distributed ledger maintained by RA
and ESs. It is responsible for recording the public keys
and revoked devices. The information recorded on the
BC is reliable.

B. Security Goals

The scheme is supposed to satisfy the following security

goals.

1) Mutual Authentication: To protect the system security
and avoid leaking the privacy of the devices, commu-
nicators need to validate each other’s identity before
sending sensitive message.

2) Conditional Anonymity: To protect the privacy of the
devices, no other entity can know the real identity of
the device except for the RA, which can reveal its
identity.

3) Session Key Agreement: For further exchange of secret
messages, a session key that can only be shared between
the communicators should be produced during the
mutual authentication process.

4) Unlinkability: No one except the RA can determine
whether two different signatures are from the same
device.

5) No Online RA: To minimize the communication over-
head, it allows communicators to achieve mutual
authentication and update the keys of devices without
involving the RA.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

6) Forward Security: To protect the previous
communications from being leaked, it is necessary to
ensure that even if an attacker obtains the secret key,
they cannot obtain the session key used in previous
communications.

7) Resistance to Common Attacks: To guarantee the secu-
rity of the whole network, the scheme should withstand
various typical attacks, including replay attacks, stolen
verifier attacks, and impersonation attacks.

C. Attack Model

There are two types of attackers: 1) internal attackers and
2) external attackers. Internal attackers are those actively
engaged in the scheme, such as ESs and SDs. External
attackers are not involved in the scheme and do not have access
to critical materials. Some typical attacks are as follows.

1) Internal Attack:

a) Semi-Trusted ESs: In the proposed protocol, we
suppose ESs as semi-trusted entities. They will
execute the protocol honestly but will be curi-
ous about the identity of the requester and the
information transmitted via the public channel.
Furthermore, in cross-domain authentication, the
ESs in different domains may not always trust
each other. The absence of complete trust between
interdomain ESs can lead to privacy leaks dur-
ing cross-domain authentication processes for IIoT
devices. The ES of the accessed domain might
identify the true identity of the accessing device,
capturing access activity records for thorough
analysis and thereby compromising the device’s
privacy.

b) Compromised SDs: SDs are resource-constrained
and can be compromised. Once compromised,
the SDs may leak confidential data or inject
false data, disrupting subsequent data analysis. In
cross-domain environments, a task may involve
collaboration among multiple domains. If devices
are compromised and subsequently move to dif-
ferent domains, they could transmit misleading
information, potentially leading to erroneous data
analysis and mission failure.

2) External Attack:

a) Replay Attack: An attacker sends a message
that the server has already accepted, aiming
to deceive the server and successfully pass the
authentication process. In cross-domain authen-
tication, the attacker might intercept a message
sent by a device in domain A and forward
the message to domain B to achieve successful
authentication.

b) Impersonation Attack: By impersonating a legiti-
mate entity (i.e., SD), an attacker can interact with
the server and successfully pass the authentication
process. Similarly, in cross-domain environments,
an attacker might impersonate ESs across multiple
domains, interacting with devices to pass the

16329

authentication and obtain relevant information
about tasks.

¢) Eavesdroping Attack: An attacker can eavesdrop
on the information exchanged between the device
and the server through the public channel, thereby
gaining access to private information. Additionally,
when a task involves multiple domains, an
attacker in a cross-domain environment can infer
sensitive details (e.g., production quantity) by
eavesdropping on communications across these
domains.

V. PROPOSED SCHEME

In this section, we describe the specifics of the proposed
authentication protocol for SDs and ESs.

A. Overview

Our protocol consists of five phases: 1) setup; 2) reg-
istration; 3) pseudonym application; 4) authentication; and
5) revocation. We provide a high-level explanation of the
blockchain-based protocol.

The RA sets up the system and generates the private key
and public key. Then it publishes the system parameters. The
new edge sever and device need to register with RA before
interacting with each other. The edge sever can obtain the
pseudonym materials during the registration process and then
SD can apply for new keys and pseudonyms from ES. After
the mutual authentication with ES, the device can acquire the
service from the server. The RA can revoke a device and record
it on the blockchain.

B. System Setup

The RA performs the system setup phase at the start of the
system deployment, as explained in the following.

1) RA selects a cyclic additive group G with a generator

P and a prime order g on an elliptic curve E(IF,) over
the finite field [F,.

2) RA randomly selects a number s € Z; and set it as its
private key. Then RA computes the corresponding public
key Ppup = sP.

3) RA Selects Hash Functions: hy : G — ZZ, hy Z; —
Ly, h3 0,17 — Zj hs 0,1} x G —
Zg,hs :{0,1}* x G xGx G — Zg, he - {0, 1}* x G x
G x {0, 1}* — Z3.

4) RA keeps s secretly and publishes the public parameters
{Gv q, P, Ppllb7 hl(l <i=< 6)}

Then, RA initializes the blockchain according to the
configuration file, and the successfully registered ESs
can join the blockchain network to facilitate collabora-
tion through the consensus mechanism. Smart contracts
are deployed in the blockchain to manage cross-domain
information. The related smart contract algorithms are shown
in Algorithms 1-3. Algorithm 1 updates the information of
ESs, adds newly registered servers to the smart contract,
and marks ESs as invalid if they exhibit malicious behav-
ior. Algorithm 2 records information for SDs applying for
pseudonyms and, if a device displays malicious behavior, it is

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16330

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Algorithm 1 Update ESMT

Algorithm 3 Query ESMT

Input: parameters{/D, PK, R, status}
Output: bool

1: struct ESM {

2: byte32 ID

3: uint256[4] PK

4: uint256[4] R

5: string status }

6: struct ESM[] ESMT

7. if msg.sender # RA then
8 return false

9

: else
10 i=1
11: for ; i < ESMT.size(); i++ do
12: if ESMT[i].ID == ID then
13: function Update_ESM(ID, PK, R, status)
14: return true
15: end if

16: end for
17: if i > ESMT.size() then

18: function Add_New_ESM (ID, PK, R, status)
19: return true

20: end if

21: end if

Algorithm 2 Update SDMT
Input: parameters{<2, t, z, status}
Output: bool
1: struct SDM {
2: byte32 Q
3 DateTime t

4 uint256[2] z
5. string status}
6
7
8

. struct SDM[] SDMT
. if status == invaild && msg.sender = RA then
. return false;
9: else if msg.sender # server then
10: return false;
11: else
12: i=1
13: for ;i < SDMT.size();i++ do
14: if SDMTI[i].Q2 == Q then
15: function Update_SDM(L2, ¢, z, status)
16: return true
17: end if
18: end for
19: if i > SDMT.size() then
20: function Add_New_SDM (2, t, z, status)
21: return true
22: end if
23: end if

marked as invalid to prevent further pseudonym applications.
Algorithm 3 is utilized to query the public key of registered
ESs.

Input: parameters{/D}
Output: parameters{ID, PK, R, status} or false

i=1
2: for ;i < SDMT.size();i++ do
3 if ESMT([i].ID == ID then
4: return{ID, PK, R, status}
5 end if
6: end for
7: return false
ES; RA BC
D,

— = » Check whether ES, is registered
Choose f,rﬁ B riz € Zy,
U € G that satifies the properity
§-U=P"P pub
Compute
Ry =11 -P,R; =1} P {ID, PK, R, vaild}

(RLRLx,U,) %= ri +s-hy(ID, RY) invoke
il i B

PK; = Xt P responce algorithm 1
Check whether A= (ry + 5)®h,(sPK))
x;* P = R + P,,,h,(ID, R})holds
Compute v = A®h, (x;P)
Keep {R%, Rb, x, PK,,v, U}
Fig. 2. ES registration phase.
SD; RA
ID .
———~+ Check whether SD; is revoked
Choose ki€ Z3
Compute
K; = kP
K, 0Siglw)} ©= k;+ shy(ID;, K;)
-—
Check whether
WP = K; + Pouhy(ID;, K holds
Keep {K;, w,Sig(w)}
Fig. 3. SD registration phase.
s ES, BC
Compute
TK = @ PKgs

Encioren = Erg (1, taare)
{req, 2, sig(), EnCyopens taare}
—_—

Check whether sig((2) is valid

Compute TK = x - 2

Check whether

(42, tgare) = Dri(ENCeopen) holds

Choose z,d, € Z

Compute

D,=d;-P

=z + hy(X, hy(taaee) +)

PID = {0}, 0%}, where

o} = U, 05 = D+ a Py

pr=d;+ v+ hs(tyqe + 1AL, D, PID))

" M = Erg(p, PID, D))

— wherel<li<n

{0, tyorer 2, vaild}
—— " invoke

«_esponce algorithm 2

Compute
Dy (M)
Keep {p, PID,, D}}

Fig. 4. Pseudonym application phase.

C. Registration

In this phase, each ES and SD is required to register
with RA to get its secret key and corresponding public
key, respectively, where the registration process should be
performed in a secure and private channel. Figs. 2 and 3 show
the main steps of the ES registration phase and SD registration
phase, respectively.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

16331

SD; ES, ES:
Choose a € Z;
Compute
A=aP
Y =a+ phy(T,, A) {A,9,PID, D, t, 1}
lett,=type+1At; — 3" Check whether
Thow — T1 < At
Toow =t < At
Check whether
YP =A+ (D, + hs(t, D, PID))
(RESE + P))hy(T1, A) holds
Choose b € Z;
Compute
B = bP,SK, = x;A,SK, = bA,
(B,e,Ty) SKij = he(ID;, SK1,SK;, T5)
e = hy(Ty, T2 SK;)
Check whether T,,,, — T, < At,
Compute SK; = aPK,SK, = aB
SK;; = he(ID,, SK', SK5,T5)
Check whether e = hy(T4, T2, SK;)holds
Keep SKj;
Choose a’ € Z;
Compute
A =aP
Y =a' + phy(T3 A) o,
lett; = tyqe + 1ALy UDgg, A, PID, Dy £, T3} Check whether
Thow — T3 < Aty
Toow — t1 < Aty
Obtain {IDy;, PK s, R5"} from BC
Check whether

{B",e, T}

WP = A’ + (D, + hs(t, D, PID)
(RES' + P)Y hy(T, A) holds
Choose b € Z;

Compute

B'=b'P,SK; = xA’,SK, = b'A,
SK;j = hs(IDy, SK3, K4, Ty)

Check whether T,,,, — T, < At,
Compute SK; = a"PK, :S'K4 =abB

SKj; = he(IDy, SK3,5K4,T4)

Check whether e = hy(T3, T4, SK j)holds
Keep SK j;

e = hy(T5, Ty, SK;))

Fig. 5. Authentication phase.

1) Edge Server Registration:

1) Upon receiving the real identity ID; from ES;, RA first
checks whether ID; has been previously registered. If it
has, RA will refuse this request. If not, RA will execute
the following steps.

RA selects several random numbers &, i, r, € Z:. In
addition, there is an element U € G that satisfies the
following property: §U = Ppyp. Then RA calculates
Ry = rP, R, = ryP,x; = r| + sha(ID;, R)), PK; = x;P
and A = (v +) @ h1(sPK;), where A is the parameter
for ES; to generate pseudonyms for SDs, x; is the private
key belonging to ES; and PK; is the corresponding
public key. RA sends m = {Rli, Ré, xi, U, A} to ES; in a
secure channel. RA stores {ID;, &;} in its local database,
and uploads {ID;, PK,-,RQ, valid} to the blockchain by
invoking the smart contract 1, i.e., Update ES materials
table (ESMT).

2)

3) Upon receiving the message mi, ES; checks
whether x;P = R| + Ppuwha(ID;, R}) is satisfied,
if so, ES; calculates PK; = xiP,v = A @

h1 (xiPpub), and stores {Ri , Rg,xi, PK;, v, U} in its local
database.

2) Smart Device Registration:

1) SD SD; sends its identity ID; to RA. First, RA checks
whether the SD is revoked, if not, executes the following
steps.

RA chooses a random number k; € ZZ, and calculates
Kj = kiP, w = kj + sh4(IDj, K;) and Q = wP, where
2 is deemed as a token belonging to SD;. Finally, RA
sends my; = {Kj, w, sig(§2)} to SD; in a secure channel,
where sig(€2) is a signature signed on 2 with the private
key s of RA.

Upon receiving the message mp, SD; computes
Q2 = wP and checks whether the condition Q =
K; + Ppuwhs(IDj, Kj) is satisfied. If so, SD; stores
{Kj, w, 2, sig(2)} in its local database.

2)

3)

D. Pseudonym Application

To avoid the single point of failure and relieve the burden
of RA, we offload the task of generating pseudonyms to ES.
Fig. 4 shows the main steps of the pseudonym application
phase.

1) First, SD; sends the request and its token to ES; to

validate the authenticity. The details are as following.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16332

a) SD; obtains IDgg; and the corresponding public key
PKEs; of the ES (denoted by ES;) which is close
to SD; by querying the blockchain.

b) Then SD; calculates TK = wPKgs;, CTioken =
ETk (L2, tdate), Where ETg is symmetric encryption
with key TK and fgae is the time when SD; applies
for pseudonyms.

c) SD;j sends m3 = {2, sig(£2), CTioken, tdate} to ES;.
we need to note that the signature sig(€2) is to prevent
malicious users from sending useless messages to
occupy the resources of the servers and the CTgkep is to
ensure that only the user who owns the token can apply
for pseudonyms to avoid man-in-the-middle attacks.

2) After successfully validating the authenticity of the
token, ES; calculates the pseudonyms and uploads
related information to the blockchain. The details are as
following.

a) Checks whether the signature is valid. Aborts if the
check fails.

b) ES; calculates TK = x;<2 and verifies if (€2, fqate) =
D7k (CToken) holds, where Drg is symmetric
decryption with key 7K. Aborts if the check fails.

¢) ES; chooses several random numbers z, d; € Z*,
and calculates D; = d;P, o; = z+ hp (x;, h3(tdate) +
Dol = Ul = Q + Py, PID; =
{ol, 03}, pi = di+vhs(tawe+1At1, Dy, PID;), where
1 <[< n, n represents the number of pseudonyms
and Aty represents the period when the pseudonym
is valid. Then ES; will upload {2, t4ate, z, valid} to
the blockchain by invoking the smart contract 2,
i.e., Update SD materials table (SDMT).

3) Finally, ES; sends the ciphertext of the pseudonyms
to SD;. SD; gets the pseudonyms by decrypting the
ciphertext. The details are as following.

a) ES; computes M = Erx({p1, PID;, Dy;})
(I <1< n), and sends M to SD;. ES; will delete
all the related information about pseudonyms in its
local database when it finishes the service. There
are two reasons for that: a) we can protect the
pseudonyms from being leaked when the server is
compromised and b) we can save storage because
the number of devices is large.

b) Upon receiving the ciphertext M, SD; obtains the
materials {p;, PID;, D;}(1 <[< n) by computing
Drx(M).

E. Authentication

A SD needs to authenticate with ESs in different domains
as it may move to different edge networks to perform tasks.
Therefore, there are two scenarios to consider. The first case
is that the SD authenticates with the ES which is responsible
for generating pseudonyms for it. The other one is that the
SD authenticates with ESs where the device is located after it
has moved. Fig. 5 shows the main steps of the authentication
phase.

1) When the SD SD; is not moving or the server where

the device is located has generated pseudonyms for it,

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

SD;j needs to carry out this phase to authenticate the
server ES; and to negotiate a session key for further
communication. The details of this phase are as follows.

a) SD; selects a random number a € Z; and computes
A = aP, ¥ = a+ phs(T1,A), where T; is the
current timestamp.

b) Let #; = tgae + [At1, SD; sends the message my =
{A, ¥, PID;, Dy, 1;, T1} to ES;.

¢) Upon receiving the message my, ES; first verifies if
Toow — T1 < Aty and Thow — 1; < Aty holds, where
Thow 1s the current timestamp and Af, represents
the maximum tolerable interval. Then ES; checks
whether PID; is revoked and checks whether ¥ P =
A+ (Di+hs (1, Di, PID) (RS + Poun))ha(T1, A) is
satisfied. Rejects if the check fails.

d) ES; selects a random number b € ZZ and cal-
culates B = bP,SK; = x;A,SK, = bA, SK;; =
he(ID;, SK1, SK>,T2), e = h4(T1, T, SK;j), where
T, is the current timestamp. The value SKj; is a
session key and e is responsible for the authenticity
of the session key. ES; sends the message ms =
{B, T, e} to SD;

e) Upon receiving the message ms, SD; first checks
whether Thow — T2 < Af is satisfied. Rejects
if the check fails. Then SD; calculates SKi =
aPK;, SK% = aB, SK;; = he¢(ID;, SKi, SK%, T>) and
sets SKj; as the session key if e = hyq(T1, T2, SKj;)
holds.

2) When the SD SD; has moved, it needs to carry out this
phase to authenticate ES ES; and establish a session key
for further communication. The details are as follows.

a) SD; chooses a random number da' € ZZ and
calculates A" = d'P, ' = d' + pih4(T3,A’), where
T3 is the current timestamp.

b) Let #; = tgae + [At1, SD; sends the message mg =
{IDgs;, A', v, PID;, Dy, t;, T3} to ESjy.

¢) Upon receiving myg, ESy first verifies if Tpow —
T3 < At, Thow — t; < Atp holds, where Tyow is the
current timestamp. Then ES; checks whether PID;
is revoked and retrieves the corresponding tuple
(IDgsi, PKEs;, RgSi) from the blockchain according
to IDgg;.

d) Checks whether ¥'P = A + (D, +
hs (1, Dy, PID)) (REST + Ppub))ha (T3, A') is satisfied.
Rejects if the check fails.

e) Performs the same process from step 4 to step 5
in the above phase.

F. Revocation

ES sends the corresponding pseudonym {/Dggs;, PID;} to RA
when there is a malicious device called SD;. RA retrieves the
tuple {IDgs;, £gs;} from its local database according /Dgs; and
calculates Q2 = 021 — 555,-011 . And RA will record {£2, IDSDj}
on the blockchain to prevent SD; from reregistering and
applying for pseudonyms again. In addition, RA retrieves the
tuple {€2, f4ae, z} and calculates the successive pseudonyms
PID; which are still valid if not revoked. To save storage

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

TABLE 11
COMPARISON OF SECURITY PROPERTIES

Security Properties [6] [12] [24] Ours
Mutual Authentication v v v v
Conditional Anonymity v v X v
Session Key Agreement v v v v
Unlinkability X X X v
No Online RA v v v v
Efficient Update X X X v
Stolen Verifier Attack v v X v

V'@ satistying the security property
X: not satisfying the security property

overhead, we use cuckoo filter to record the revoked devices
instead of a revocation list. If there is a data structure which
has better performance in storing and querying, it can be
replaced. Specifically, RA prepares a cuckoo filter whose size
is dependent on the max number of revoked devices. Note that
the data recorded on the filter is the fingerprint of O’ll. Because
all and PID; correspond to each other and the space can be
saved. When these pseudonyms expire, RA executes the delete
operation to remove the corresponding fingerprints from the
filter. Note that the filter is in the blockchain.

VI. SECURITY ANALYSIS

In this section, we first analyze the security of our proposed
scheme by using the random oracle model. Then, we discuss
how the proposed protocol meets the requirements presented
in Section III, and the comparison with other relevant
schemes [6], [12], and [24] are listed in Table II. Finally, we
utilize ProVerif to prove the security of the scheme.

A. Formal Security Proof Using Random Oracle Model

We propose a security model for our proposed scheme. The
model is defined by a game played between an adversary A
and a challenger C. In this game, the adversary can make the
following queries.

1) Setup: The challenger C first generates system parame-

ters and private key, and then sends public parameters
to the adversary A.

2) Hash Oracle: When the adversary A makes a query with
information m, the challenger C selects a random number
x and stores {m, x} in the corresponding list(Lps0rLps).
Then C sends x to A.

3) Secret Key Oracle: When the adversary A invokes the
query with PID, the challenger C can generate the secret
key. Then, C sends the secret key to A. Let Qg denote
all the secret key queries that .A. has made.

4) Output: The adversary A returns a signature
{A,v,PID,D,t,T}. A wins and outputs 1 if
verif(A, ¥, PID,D,t,T) = 1 and the secret key is not
included in Q.

Theorem 1: If the adversary A can break the proposed

scheme I, the challenger C can solve the ECDL problem.
Proof: If the adversary A can successfully forge a
signature {A, ¥, PID, D, t, T}, then the challenger C is able to
break the ECDL problem in polynomial time by utilizing .4
as a subroutine. We let {P, PK = skP|P € G, sk € Z;‘} be an

16333

instance of ECDL problem, the purpose of C is to compute
the value sk. A can make following queries supported by C.

1) Setup: The challenger C first generates system param-
eters {G, g, P, Ppub, h4, hs}, and then sends public
parameters to the adversary A.

2) h4 Oracle: The challenger C maintains a list Ly4 which
is initialized to be empty. When the adversary A makes
a query with information <7, A>, the challenger C first
checks whether <T, A, xj4> exists in the list, returns
xp4 if it exists. If not, C selects a random number xj4
and inserts <T, A, xp4> into Lps. Then, C returns xj4
to A.

3) hs Oracle: The challenger C maintains a list L5 which
is initialized to be empty. When the adversary .4 makes
a query with information <t, D, PID>, the challenger
C first checks whether <t, D, PID, x;5> exists in the
list, returns xp5 if it exists. If not, C selects a random
number x5 and inserts <t, D, PID, x;5> into Lys. Then,
C returns xp5 to A.

4) Secret Key Oracle: When the adversary A makes a
query with information PID, the challenger C chooses
random numbers p and d, where p is as the secret key
corresponding to PID. Then, C computes D = dP and
queries x5 = hs5(t, D, PID) through the list Lys. Finally,
C sends <PID, D, p> to A.

5) Output: The adversary A chooses a random number a
and computes A = aP. Then A make a hs query with
message A and computes v = a + phs(T, A). Finally,
A generates a signature {A, vy, PID, D, t, T}.

According to forking lemma [40], A is able to obtain

another signature {A, /', PID, D, t, T} by executing the above
operations with a different result of x;5 but the same inputs
{t, D, PID}. Therefore, it is easy to obtain the following
equation:

w/ =a-+ (d + vx,hs>xh4. (D)
Then, the challenger C can get v by computing
(v —v)

——— (mod
EEEEAET

a+ (d+vxps)xps —a — (d + vx;ls)xm

(xns — x),s5) Xna
= ()

Therefore, the challenger C outputs the (¥ — 1//)(xh5 —
xQZS)_lx/;‘l as the solution of the ECDL problem. We let
qna, qns and g5 denote the number of h4 queries, hs queries
and secret key queries, respectively. Let E] denote the event
that there is no conflict between secret key query and hash
query, E> denote the event that A can output a valid forgery.
Therefore, A can return a valid forgery with the probability

acc = Pr[EE,] = Pr[E]| Pr[E>|Eq]. 3)

Since A makes gpa + gns + g5 queries, the probability
of the event that bad < true is ([gna + qns + gqsl/q) for
one secret key query and the probability for g; queries is
(Ig5(qna + qns + 45)1/q). Therefore, Pr[E;] = 1 — Pr[bad =
true] = 1 — ([gs(qna + qns + gs)1/9)-

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16334

Pr[E3|E|] represents the probability that A returns a valid
forgery when C does not terminate due to the A’s queries.
Thus, by assumption A is able to return a valid forgery with
probability at least €.

Therefore, A can return a valid signature with the probabil-
ity acc = € — ([gs(gna + qn5 + g5)1/g), which can be derived
from the following relations:

Pr[E|E] = PrifaBz) > €
PlE1] —
“4)
Pr[E\Ey] > €Pr[E]
_ 6(1 _ qs(qns + qns + %))
q
_ o s(an t ans + g5)
q
> € — qs(qna + qns +4qs) 5)
q

According to the General Forking Lemma [41], C can output
two valid signatures by utilizing .4 as a subroutine with the
probability frk > acc([acc/q] — [1 /h]), where § denotes the
number of hash queries, and h denotes the number of replies
to queries to random oracles. Therefore, C is able to break the
ECDL problem with the probability

4 —=1 ®

(6 q5(gns + qns + q5)
qna + qns q

€ — 9s(qna+qns+qs)
q)

where € is nonnegligible. However, this is in contradiction to
the ECDL problem. Therefore, the scheme is secure under the
random oracle model.

B. Informal Security Analysis

1) Mutual Authentication: If an attacker intends to success-

fully pass the authentication with ES, the attacker must
present a signature ¥ = a + pjha(T,A) , where p; =
(d;+vhs(t;, Dy, PID;)). According to the forking lemma,
the attack can also provide another valid signature 1// =
a—+ (d + vh/s)h4. Therefore, there will be a solution
(¥ —¥)(hs—h5)~'h; " of the ECDL problem. However,
this is in contradiction to the ECDL problem.
If an attacker, pretending to be a valid ES, aims to
successfully pass the verification with SD, it needs to
compute the hash value hy(Ty, T, SK;j), where SK;; =
he(ID;, T», SK1, SK»), SK1 = x;A,SK; = bA. Thus,
the attacker can compute SKi = SK; = x;A.Then it
can obtain a solution (x;a) P = SKi to the instance
(x;P, aP, x;aP) which contradicts to the ECDH problem.
Therefore, the mutual authentication is successfully
achieved.

2) Conditional Anonymity: During the authentication with
ES, SD dose not send its real identity to the verifier
but its pseudonym. Therefore, the communicators and
attackers cannot obtain the information about SD’s
identity. However, the RA can know who the SD is by
computing 2 = 021 — EESUII using the secret value &gg,
where Q2 associates with the identity.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

3) Session Key Agreement: ES; and SD; computes SK;; =
he(ID;, SK1, SK>, T») and SKj; = he(ID;, SK}, SK}, T>)
independently. Afterward SD; confirms the validity of
the session key SKj; by verifying the equation e =
ha(Ty, T2, SKj).

4) Unlinkability: SD owns a number of pseudonyms and
each pseudonym contains random number and times-
tamp. Therefore, attackers cannot distinguish whether
two messages belong to the same device.

5) No Online RA: It is obvious that the mutual authentica-
tion between devices and servers dose not rely on the
RA. What is more, there is no need for the RA to update
the pseudonyms and temporary keys for devices.

6) Forward Security: Due to the session key SK;; and SKj;
is computed by ES; and SD; independently, only the
attacker who can break the ECDH assumption can get
the random numbers a and b to generate the right session
key.

7) Resistance to Common Attacks: The proposed scheme
can resist the following common attacks.

a) Reply Attack: Given the randomness and times-
tamp, it is easy to find whether a replay has
occurred by checking the freshness of the times-
tamp.

b) Stolen Verifier Attack: Since the information about
ESs recorded on the BC and there is not a
list recording the devices’ identities, the proposed
scheme is secure against the stolen verifier attack.

c) Impersonation Attack: If an attacker intends to
impersonate a legitimate entity (e.g., SD), it must
break the mutual authentication security, which is
proven in Sections VI-A and VI-B. Therefore, the
proposed scheme is secure against the imperson-
ation attack.

C. Formal Security Verification Using ProVerif

In this section, we present the results of formal security
verification using ProVerif. The ProVerif is an automatic
cryptographic protocol verification tool that can prove the
security of various schemes. It can achieve some security
properties, such as reachability, correspondence assertions, and
observational equivalences. Since all SDs and ESs are equal,
the simulation result cannot be affected by the number of
devices and servers. Therefore, we assume that there are only
one ES and one device. Similarly, we assume that devices own
one key and one pseudonym instead of a batch. The simulation
code is described in [42]. Fig. 6 shows the simulation results.

In Fig. 6, (1), (2), and (3) are the results of reachability
query that show the attacker cannot obtain the private key
of RA and the session key. The result (4) shows the strong
anonymity of M which denotes the pseudonyms belonging
to a device. In the simulation code, four events have been
identified denoted as event authES(SK), event authSD(SK),
event regisES and event regisSD. In Fig. 6, (5), (6), and (7)
show the results of correspondence assertions that indicate
the mutual authentication between ES and SD is successfully
achieved.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

Verification summary:

(1)Query not attacker(s[]) is true.

(2)Query not attacker(SK_ij[]) is true.

(3)Query not attacker(SK_ji[]) is true.

(4)Non-interference M is true.

(5)Query inj-event(authSD(SK)) ==> inj-event(authES(SK)) is true.
(6)Query inj-event(authES(SK)) ==> inj-event(regisSD) is true.
(7)Query inj-event(authSD(SK)) ==> inj-event(regisES) is true.

Fig. 6. Simulation results from the ProVerif tool.

TABLE III
COMPARISON OF COMPUTATIONAL COST (MS)

Schemes ES SD

Ref. [6] 6TGm + 2Tga + 5Th ATGm + Tga + 4T},

Ref. [12] | 8Tgm + 3Tga +5Th | 6Tgm +2TGe + 5T},

Ref. [24] 6Tgm +1Tga "Tom +1ca
Ours 5Tcm + 3Tgae + 4T 3TGm + 3Th

TABLE IV
COMPARISON OF COMMUNICATION COST (BYTE)

Schemes Communication cost Length(byte)
Ref. [6] 3|G| + 2|Zy| +2|T 395
Ref. [12] 3|G| + 2|Zy| +2|T 395
Ref. [24] 6|G| 582
Ours 5|G| + 2|Z4| + |ID] + 3|T| 613

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our proposed
scheme from three aspects which are computation cost,
communication cost and on-chain cost. And we compare it
with three related schemes [6], [12], and [24]. In Table III,
we demonstrate the comparison of computation overhead to
analyze the cost of these schemes on both SD and server.
Additionally, the comparison of communication overhead is
shown in Table IV. They are the theoretical analysis of the
proposed scheme and the other three schemes, and they can
point out the reasons for the differences among these schemes.

Wang et al. [6] built a consortium blockchain using
Hyperledger Composer version V0.20.7, running on an x86_64
GNU/Linux system with 1 core and 2 GB RAM for executing
smart contract operations. And we refer their experimental
results, and the results are illustrated in Table V. We use
the cryptographic library called MIRACL Core to test the
execution time of cryptography operations under the Ubuntu
18.04 with Intel Skylake CPU @ 2.2 GHz and 2 GB bytes
memory provided by a cloud platform. The experimental
results are depicted in Figs. 7 and 8.

A. Computation Cost

We use TGm, Tgq and Ty, to represent the execution time of
scalar multiplication operation in G, point addition operation
in G, and one-way hash function operation. We omit some
overhead of light operations, such as XOR operation, addition
operation, and multiplication operation in ZZ.

16335

4.014

3.122 3.101

2.969 2957
3
2.445
25 2227
2
1.467
15
1
- I
0
Wang et al. [6]

Wang et al. [12]

Computation cost (ms)

Rostampour et al. [24] Our scheme

WES mSD

Fig. 7. Comparison of computation cost.
700
613
.
600 562
’c;;'\
< 500
T‘Z‘ 395 395
8 400
5
8 300
; 200
100
0
Wang et al. [6] Wang etal. [12] Rostampour et al. [24] Our scheme
Fig. 8. Comparison of communication cost.

We mainly focus on the authentication phase because the
registration is executed for only once and the corresponding
cost has little influence on the whole system. First, we consider
the computation cost on server side. In [6], the computation
cost on server side requires six scalar multiplication opera-
tions, two point addition operations and five hash function
operations. Therefore, the computation cost is about 67, +
2TGa+5T, ~ 3.122 ms. In [12], the server requires eight scalar
multiplication operations, three point addition operations and
five hash function operations. The computation cost is about
8TGm + 3Tga + 5T, =~ 4.014 ms. In [24], the server needs
to perform six scalar multiplication operations and one point
addition operation. Thus, the computation cost is about 67, +
TGa =~ 2.957 ms. Since the computation overhead is similar
in both cases of the authentication phase in our scheme,
we consider the second one. And the computation cost on
server side in our scheme needs five scalar multiplication
operations, three point addition operations and four hash
function operations. The corresponding cost is about 57, +
3TGa + 4T, ~ 3.101 ms. Then, we consider computation
time cost on SD side. In [6], the computation cost on
device side requires four scalar multiplication operations, one
point addition operation and four hash function operations.
Therefore, the computation cost is about 4Tg, + Tgs +
4T, =~ 2.227 ms. In [12], the device requires six scalar
multiplication operations, two point addition operations and
five hash function operations. The computation cost is about
6TGm + 2TG, + 5T, =~ 2.969 ms. In [24], the device needs to
perform seven scalar multiplication operations and one point
addition operation. Thus, the computation cost is about 77, +
TGqs =~ 2.445 ms. And the computation cost on device side
in our scheme needs three scalar multiplication operations

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16336

TABLE V
TIME COST (IN SECONDS) OF THE SMART CONTRACT IN [6]

Operations Update Delete Query
Max Time 2.681 2.590 0.312
Min Time 1.989 2.086 0.138
Average Time 2.335 2.338 0.225

and three hash function operations. The corresponding cost is
about 37G, + 37, ~ 1.467 ms. The computation overhead
comparison of our scheme with [6], [12], and [24] is shown
in Fig. 7. And Table III shows the specific data.

From Table III, we can see that our scheme requires several
multiplication operations in G. That is, due to the need
to develop a method that protects the real identity of SD
from being exposed to the ES responsible for generating
pseudonyms. By doing so, the real identity of SD can only be
revealed by the RA that owns the secret value &.

B. Communication Cost

As the BLS12381 curve is used in our scheme, the size of
the element in Z; and G is 48 bytes and 97 bytes, respectively.
The size of timestamp and identity are 4 bytes and 20 bytes,
respectively. Table IV demonstrates the communication costs
of these schemes. |G| and |Z,| denote the size of the element
in G and Z;. |T'| and |ID| denote the size of the timestamp
and the identity, respectively.

In [6], it needs to transmit 3|G| + 2|Z,;| + 2|T|. The
communication cost is 3 x 97 + 2 x 48 + 2 x 4 = 395
bytes. In [12], it needs to transmit 3|G| + 2|Z,| + 2|T|. The
communication cost is 3 x 97 + 2 x 48 4+ 2 x 4 = 395 bytes.
In [24], it needs to transmit 6|G|. The communication cost
is 6 x 97 = 582 bytes. Since the communication overhead
is similar in both cases of the authentication phase in our
scheme, we consider the second one. Our scheme needs to
transmit 5|G| + 2|Z,| + |ID| + 3|T|. The communication cost
is 5x 9742 x48+20+ 3 x 4 =613 bytes.

From Fig. 8, we can see that the communication overhead
of our scheme is a little higher than the other schemes.
The communication overhead in our scheme is primarily due
to the pseudonym {PID, D} generated by ES. In real-world
scenarios, temporary keys and pseudonyms with expiration
time are regularly distributed to protect the privacy of devices.
Thus, the frequency of updating keys will be high due to the
large number of devices. In contrast to other schemes where
the task of updating keys is usually undertaken by RA, our
scheme utilizes ESs to generate pseudonyms and update keys
for devices. The overhead incurred is affordable and does not
pose a significant challenge.

C. On-Chain Operation Time and Storage Cost

As Rostampour et al. [24] did not utilize blockchain, the
comparisons relate only to our proposed protocol [6], [12]. In
our scheme, the on-chain operations include update operation,
delete operation and query operation. From Table V, we can
see that the time taken for update and delete operation is
approximately 2.335 s and 2.338 s, respectively. However, the
cost of query operation is significantly lower than that of

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

n-chain operation time (s)

04

025

02
: I I I

01

0.05

0

Case 2

Wang et al. [6] Wang et al. [12) Caes 1

Fig. 9. Comparison of on-chain operation time cost.

update and delete operation, at around 0.225 s. In the first case
of the authentication process, ES performs one read operation
to check whether the device is revoked. In the second case of
the authentication process, ES performs two read operations
in our scheme. One read operation is to determine whether the
device is revoked, and the other one is to look up the public
key of ES when the device moves to another edge network.
In [6] and [12], the server needs to perform one read operation.
The comparison result can be seen in Fig. 9. In real-world
scenarios, ES has much more computation resources than the
simulation platform and the cost of on-chain operation will be
less.

Additionally, since the content on the blockchain cannot
be deleted, the ledger will grow indefinitely. Therefore, it
is vital to evaluate the storage overhead on the blockchain.
In [6], there is an entry existing on the blockchain for every
registered device. The entry contains {PID;, C;, R;, ET;}. Thus,
the storage overhead on the blockchain for one device is
calculated as 484-324-97+4 = 181 bytes. In [12], the entry on
the blockchain is consisted of {PID, X, R, T} for each device.
The corresponding storage overhead is 32+97+97+4 = 230
bytes. In our scheme, the content recorded on the blockchain
is {€2, fdate, z}. And the corresponding storage overhead is 97+
4 44 = 105 bytes. There is a difference between our scheme
and the other two schemes that we only need to store one entry
for multiple pseudonym services, while they need to store one
entry for each service. In other words, when we apply for
ten pseudonyms, we only store one entry on the blockchain,
while they need to store ten entries. Suppose that a device
requests five pseudonyms and corresponding keys at once in
our scheme. The comparison of storage cost on the blockchain
is illustrated in Fig. 10.

VIII. CONCLUSION

To protect the security and privacy of devices in an
edge-computing environment, in this study, we propose a
blockchain-based mutual authentication and session key agree-
ment for cross-domain IIoT. Specifically, we utilize blockchain
to build trust among ESs to share cross-domain information.
Furthermore, a pseudonym-based privacy-preserving method
is designed. ESs can generate pseudonyms for devices but do
not know the device’s real identity. In addition, the device
and the server can authenticate each other without revealing
the device’s real identity. However, a RA can easily revoke

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

CUI et al.:

Fig. 10.

the

—&— Wang et al.[6] Wang et al.[12] Ours

7000

6000

5000

Storage cost on blockchain (bytes)

5i 10 15 20 25

Number of updating keys

Comparison of storage cost on blockchain.

device. The security analysis and experimental results

demonstrate that the proposed scheme is efficient and practical.
In the future, we will investigate a cross-domain authentication
scheme between IIoT devices and ESs completely free from
trusted third parties.

ACKNOWLEDGMENT

The authors are very grateful to the anonymous referees for
their detailed comments and suggestions regarding this article.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

REFERENCES

L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac,
“A survey on IoT platforms: Communication, security, and privacy
perspectives,” Comput. Netw., vol. 192, Jun. 2021, Art. no. 108040.

A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, “A review
and state of art of Internet of Things (IoT),” Arch. Comput. Methods
Eng., vol. 29, no. 3, pp. 1395-1413, 2021.

R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The
Internet of Things architecture, possible applications and key chal-
lenges,” in Proc. 10th Int. Conf. Front. Inf. Technol., 2012, pp. 257-260.
W. Z. Khan, M. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi, and
K. Salah, “Industrial Internet of Things: Recent advances, enabling
technologies and open challenges,” Comput. Electr. Eng., vol. 81,
Jan. 2020, Art. no. 106522.

I. Mohiuddin and A. Almogren, “Security challenges and strategies for
the IoT in cloud computing,” in Proc. 11th Int. Conf. Inf. Commun. Syst.
(ICICS), 2020, pp. 367-372.

J. Wang, L. Wu, K.-K. R. Choo, and D. He, “Blockchain-based
anonymous authentication with key management for smart grid edge
computing infrastructure,” IEEE Trans. Ind. Informat., vol. 16, no. 3,
pp. 1984-1992, Mar. 2020.

A. Shahidinejad, M. Ghobaei-Arani, A. Souri, M. Shojafar, and
S. Kumari, “Light-edge: A lightweight authentication protocol for IoT
devices in an edge-cloud environment,” IEEE Consum. Electron. Mag.,
vol. 11, no. 2, pp. 57-63, Mar. 2022.

X. Yang et al., “Secure and lightweight authentication for mobile-edge
computing-enabled WBANSs,” IEEE Internet Things J., vol. 9, no. 14,
pp. 12563-12572, Jul. 2022.

T-Y. Wu, Q. Meng, L. Yang, X. Guo, and S. Kumari, “A provably
secure lightweight authentication protocol in mobile edge computing
environments,” J. Supercomput., vol. 78, no. 12, pp. 13893-13914, 2022.
A. Irshad, M. Sher, H. F. Ahmad, B. A. Alzahrani, S. A. Chaudhry,
and R. Kumar, “An improved multi-server authentication scheme for
distributed mobile cloud computing services,” KSII Trans. Internet Inf.
Syst., vol. 10, no. 12, pp. 5529-5552, 2016.

G. Cheng, Y. Chen, S. Deng, H. Gao, and J. Yin, “A blockchain-based
mutual authentication scheme for collaborative edge computing,” IEEE
Trans. Comput. Soc. Syst., vol. 9, no. 1, pp. 146-158, Feb. 2022.

EFFICIENT BLOCKCHAIN-BASED MUTUAL AUTHENTICATION AND SESSION KEY AGREEMENT

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

16337

W. Wang, H. Huang, L. Xue, Q. Li, R. Malekian, and Y. Zhang,
“Blockchain-assisted handover authentication for intelligent telehealth
in multi-server edge computing environment,” J. Syst. Archit., vol. 115,
May 2021, Art. no. 102024.

Q. Fan, J. Chen, L. J. Deborah, and M. Luo, “A secure and efficient
authentication and data sharing scheme for Internet of Things based on
blockchain,” J. Syst. Archit., vol. 117, Aug. 2021, Art. no. 102112.

D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz, The Digitization of the
World From Edge to Core, vol. 16, Int. Data Corp., Framingham, MA,
USA, 2018.

Y. Yang, L. Wei, J. Wu, C. Long, and B. Li, “A blockchain-based
multidomain authentication scheme for conditional privacy preserving
in vehicular Ad-Hoc network,” IEEE Internet Things J., vol. 9, no. 11,
pp. 8078-8090, Jun. 2021.

R. Vinoth, L. J. Deborah, P. Vijayakumar, and N. Kumar,
“Secure multifactor authenticated key agreement scheme for Industrial
IoT,” IEEE Internet Things J., vol. 8, no. 5, pp.3801-3811,
Mar. 2021.

Y. Zhang, D. He, P. Vijayakumar, M. Luo, and X. Huang, “SAPFS:
An efficient symmetric-key authentication key agreement scheme with
perfect forward secrecy for Industrial Internet of Things,” IEEE Internet
Things J., vol. 10, no. 11, pp. 9716-9726, Jun. 2023.

J. Li et al., “EPA-CPPA: An efficient, provably-secure and anonymous
conditional privacy-preserving authentication scheme for vehicular ad
hoc networks,” Veh. Commun., vol. 13, pp. 104-113, Jul. 2018.

J. Li, W. Zhang, V. Dabra, K.-K. R. Choo, S. Kumari, and D. Hogrefe,
“AEP-PPA: An anonymous, efficient and provably-secure privacy-
preserving authentication protocol for mobile services in smart cities,” J.
Netw. Comput. Appl., vol. 134, pp. 52-61, May 2019.

Y. Chang, J. Li, N. Lu, W. Shi, Z. Su, and W. Meng, “Practical privacy-
preserving scheme with fault tolerance for smart grids,” IEEE Internet
Things J., vol. 11, no. 2, pp. 1990-2005, Jan. 2024.

J. Liu, X. Li, Q. Jiang, M. S. Obaidat, and P. Vijayakumar, “BUA: A
blockchain-based unlinkable authentication in VANETS,” in Proc. IEEE
Int. Conf. Commun. (ICC), 2020, pp. 1-6.

A. Maria, V. Pandi, J. D. Lazarus, M. Karuppiah, and M. S. Christo,
“BBAAS: Blockchain-based anonymous authentication scheme for
providing secure communication in VANETSs,” Secur. Commun.
Netw., vol. 2021, Feb. 2021, Art. no. 6679882.

X. Li, Y. Wang, P. Vijayakumar, D. He, N. Kumar, and J. Ma,
“Blockchain-based mutual-healing group key distribution scheme in
unmanned aerial vehicles Ad-Hoc network,” IEEE Trans. Veh. Technol.,
vol. 68, no. 11, pp. 11309-11322, Nov. 2019.

S. Rostampour, M. Safkhani, Y. Bendavid, and N. Bagheri, “ECCbAP:
A secure ECC-based authentication protocol for IoT edge devices,”
Pervasive Mobile Comput., vol. 67, Sep. 2020, Art. no. 101194.

D. Rangwani and H. Om, “A secure user authentication protocol based
on ECC for cloud computing environment,” Arab. J. Sci. Eng., vol. 46,
no. 4, pp. 3865-3888, Jan. 2021.

M. Wazid, A. K. Das, N. Kumar, and A. V. Vasilakos, “Design
of secure key management and user authentication scheme for fog
computing services,” Future Gener. Comput. Syst., vol. 91, pp. 475492,
Feb. 2019.

I. Alam and M. Kumar, “A novel protocol for efficient authentication
in cloud-based IoT devices,” Multimedia Tools Appl., vol. 81, no. 10,
pp. 13823-13843, 2022.

A. B. Amor, M. Abid, and A. Meddeb, “A privacy-preserving authen-
tication scheme in an edge-fog environment,” in Proc. IEEE/ACS 14th
Int. Conf. Comput. Syst. Appl. (AICCSA), 2017, pp. 1225-1231.

K. Kaur, S. Garg, G. Kaddoum, M. Guizani, and D. N. K. Jayakody, “A
lightweight and privacy-preserving authentication protocol for mobile
edge computing,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM),
2019, pp. 1-6.

X. Jia, D. He, N. Kumar, and K.-K. R. Choo, “A provably secure
and efficient identity-based anonymous authentication scheme for
mobile edge computing,” IEEE Syst. J., vol. 14, no. 1, pp. 560-571,
Mar. 2020.

Y. Li, Q. Cheng, X. Liu, and X. Li, “A secure anonymous identity-based
scheme in new authentication architecture for mobile edge computing,”
IEEE Syst. J., vol. 15, no. 1, pp. 935-946, Mar. 2021.

D. Chaum and E. V. Heyst, “Group signatures,” in Proc. Workshop
Theory Appl. Cryptogr. Techn., 1991, pp. 257-265.

H. Huang, Y. Wu, F Xiao, and R. Malekian, “An efficient signature
scheme based on mobile edge computing in the NDN-IoT environment,”
IEEE Trans. Comput. Social Syst., vol. 8, no. 5, pp. 1108-1120,
Oct. 2021.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

16338

[34] M. Shen et al., “Blockchain-assisted secure device authentication for
cross-domain Industrial IoT,” IEEE J. Sel. Areas Commun., vol. 38,
no. 5, pp. 942-954, May 2020.

C. Lin, D. He, X. Huang, N. Kumar, and K.-K. R. Choo, “BCPPA: A
blockchain-based conditional privacy-preserving authentication protocol
for vehicular Ad Hoc networks,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 12, pp. 7408-7420, Dec. 2021.

S. S. Panda, D. Jena, B. K. Mohanta, S. Ramasubbareddy,
M. Daneshmand, and A. H. Gandomi, “Authentication and key man-
agement in distributed IoT using blockchain technology,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12947-12954, Aug. 2021.

C. Zhang, L. Zhu, and C. Xu, “BPAF: Blockchain-enabled reliable
and privacy-preserving authentication for fog-based IoT devices,” IEEE
Consum. Electron. Mag., vol. 11, no. 2, pp. 88-96, Mar. 2021.

X. Yang et al., “Blockchain-based secure and lightweight authentica-
tion for Internet of Things,” IEEE Internet Things J., vol. 9, no. 5,
pp. 3321-3332, Mar. 2021.

L. Wang, Y. Tian, and D. Zhang, “Toward cross-domain dynamic
accumulator authentication based on blockchain in Internet of Things,”
IEEE Trans. Ind. Informat., vol. 18, no. 4, pp. 2858-2867, Apr. 2022.
D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,” J. Cryptol., vol. 13, pp. 361-396, Mar. 2000.

M. Bellare and G. Neven, “Multi-signatures in the plain public-key
model and a general forking lemma,” in Proc. 13th ACM Conf. Comput.
Commun. Secur., 2006, pp. 390-399.

Y. Zhu. “Open-source code of the implementation of the BMASKA
using the proverif tool.” github. 2023. [Online]. Available: https://github.
com/yhzhul 1/proverif/blob/main/BMASKA.pv

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

Jie Cui (Senior Member, IEEE) was born
in Henan, China, in 1980. He received the
Ph.D. degree from the University of Science
and Technology of China, Hefei, China, in
2012.

He is currently a Professor and a Ph.D.
Supervisor with the School of Computer Science and
Technology, Anhui University, Hefei. He has over
150 scientific publications in reputable journals, such
as IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON MOBILE
COMPUTING, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
IEEE TRANSACTIONS ON CLOUD COMPUTING, and IEEE TRANSACTIONS
ON MULTIMEDIA, academic books, and international conferences. His current
research interests include applied cryptography, IoT security, vehicular ad hoc
network, cloud computing security, and software-defined networking.

Yihu Zhu received the B.Eng. degree from Anhui
Polytechnic University, Wuhu, China, in 2020.

He is currently a research student with the
School of Computer Science and Technology, Anhui
University, Hefei, China. His research focuses on the
security of Industrial Internet of Things.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Hong Zhong (Member, IEEE) was born in
Anhui, China, in 1965. She received the Ph.D.
degree in computer science from the University of
Science and Technology of China, Hefei, China, in
2005.

She is currently a Professor and a Ph.D.
Supervisor with the School of Computer Science
and Technology, Anhui University, Hefei. She has
over 200 scientific publications in reputable journals,
such as IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS
ON MOBILE COMPUTING, IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON MULTIMEDIA,
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IEEE
TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, and IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS AND IEEE TRANSACTIONS ON BIG DATA, academic
books, and international conferences. Her research interests include applied
cryptography, IoT security, vehicular ad hoc network, cloud computing
security, and software-defined networking.

Qingyang Zhang (Member, IEEE) was born in
Anhui, China, in 1992. He received the B.Eng.
degree and Ph.D. degree in computer science
from Anhui University, Hefei, China, in 2014 and
2021,respectively.

He is currently an Associate Professor with the
School of Computer Science and Technology, Anhui
University. He has over 30 scientific publications
in reputable journals (e.g., PROCEEDINGS OF THE
IEEE, IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, IEEE TRANSACTIONS
ON INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, and IEEE TRANSACTIONS ON
COMPUTERS) and international conferences. His research interest includes
edge computing, computer systems, and security.

Chengjie Gu received the Ph.D. degree
from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2012.

From 2012 to 2017, he was an Innovation Team
Leader with the 38th Research Institute, China
Electronics Technology Group Corporation, Beijing,
China, and conducted research and development in
the communication and networking sector. He is
currently the Dean of the School of Public Security
and Emergency, Anhui University of Science and
Technology, Huainan, China, and the President
of the Security Research Institute, New H3C Group. He has completed
postdoctoral research with the University of Science and Technology of
China, Hefei, China. He is a High-Level Innovation Leader of Anhui Province
and a Cybersecurity Expert of Zhejiang, China. His research interest includes
network security and trusted network architecture.

Debiao He (Member, IEEE) received the Ph.D.
degree in applied mathematics from the School
of Mathematics and Statistics, Wuhan University,
‘Wuhan, China, in 2009.

He is currently a Professor with the School of
Cyber Science and Engineering, Wuhan University,
and Shanghai Key Laboratory of Privacy Preserving
Computation, MatrixElements Technologies,
Shanghai, China. He has published over 100
research papers in refereed international journals
and conferences, such as IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS ON
INFORMATION SECURITY AND FORENSIC, and Usenix Security Symposium.
His work has been cited more than 10000 times at Google Scholar. His main
research interests include cryptography and information security, in particular,
cryptographic protocols.

Prof. He is the recipient of the 2018 IEEE Sysems Journal Best Paper
Award and the 2019 IET Information Security Best Paper Award. He is
in the editorial board of several international journals, such as Journal of
Information Security and Applications, Frontiers of Computer Science, and
Human-Centric Computing and Information Sciences.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:23:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

