
SLCSA: Scalable Layered Cooperative Service
Attestation Scheme in Cloud-Edge-End Cooperation

Environments

Jie Cui
School of Computer Science

and Technology
Anhui University

Anhui, China

cuijie@mail.ustc.edu.cn

Qipeng Chen
School of Computer Science

and Technology
Anhui University

Anhui, China

e21201030@stu.ahu.edu.cn

Li Han*
School of Computer Science

and Technology
Anhui University

Anhui, China

hanli98@ahu.edu.cn

Yang Li
Anhui Province Key Laboratory of

Cyberspace Security Situation
Awareness and Evaluation

Anhui, China

liyanghf@nudt.edu.cn

Qingyang Zhang
School of Computer Science

and Technology
Anhui University

Anhui, China

qingyang.zhang.inchina@gmail.com

Lu Liu
School of Informatics

University of Leicester
Leicester, U.K

l.liu@leicester.ac.uk

Hong Zhong
School of Computer Science

and Technology
Anhui University

Anhui, China

zhongh@ahu.edu.cn

Abstract—In a cloud-edge-end cooperation environment, edge
and core cloud services are complementary and synergistic,
jointly processing a large amount of private data uploaded by
users. To prevent the leakage of private data, users must ensure
that services are secure and trusted through remote attestation.
Traditional one-to-one remote attestation schemes are typically
used to test the cloud services. However, as the cloud platform
scales and the number of edge and core cloud services grows
rapidly, the traditional attestation method has problems, such
as poor scalability and low attestation efficiency. Thus far, there
has been a lack of feasible methods for users to verify multiple
related services in a cloud-edge-end cooperation environment
quickly. This paper presents a scalable layered cooperative service
attestation (SLCSA) scheme, the first secure and scalable protocol
for the efficient attestation of multiple cooperative services. The
SLCSA scheme is based on a Boneh–Lynn–Shacham (BLS)
multisignature to improve the scalability of the scheme while
enabling users to conduct the batch verification of services. We
also analyze the security of the proposed scheme. To evaluate
the proposed scheme, we implement it using Intel SGX, which
can provide basic hardware-assisted attestation and a trusted
execution environment for services. The experimental results
show that the SLCSA scheme is practical and efficient in a cloud-
edge-end cooperative environment.

Index Terms—collective remote attestation, cloud-edge-end
cooperation environments, multisignature, Intel SGX, Trusted
Execution Environment (TEE)

I. INTRODUCTION

In recent years, the rapid development of technologies, such

as the Internet of things (IoT) [1] and cloud computing [2],

has brought profound changes to the Internet industry. With the

massive growth in connected devices, there is a high demand

*Li Han is the corresponding author.

for cloud-computing models. Edge computing has gained

increasing attention in the past few years as a new computing

model for cloud-computing environments [3]. Compared with

traditional cloud computing, a hybrid solution that includes an

edge cloud can significantly relieve network bandwidth and

the computational pressure on cloud servers. It accelerates data

processing and improves service responsiveness to support IoT

applications. The edge cloud service is primarily responsible

for aggregating partial data in the domain, completing the

analysis and reasoning of the sensory data, and transmitting

relevant analysis results to the end devices [4]. However, the

massive number of end devices at the edge side of the network

continuously generate a large amount of sensory data and send

these data to the edge cloud for processing, which may result

in insufficient resources [5]. At this point, the resources of the

core cloud service can be called to supplement those required

to satisfy the requirements of edge-side applications. This

is called “cloud-edge-end cooperation.” Edge and core cloud

services that together provide computing resources to users are

called cooperative services. In this environment, end devices

may have high mobility, which severely affects application

reliability and service quality [6]. In addition, because of the

task offloading strategy and serving handover, the edge and

core cloud services used by the end device are not fixed [7].

Consequently, end devices may use multiple services provided

by the edge and core clouds in a short period.

In this case, it is critical for users to ensure the reliability

of the multiple cooperative services; that is, that no malicious

code is running on the cloud. Currently, the attestation of cloud

services is usually performed using two traditional one-to-one

1741

2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS)

2690-5965/23/$31.00 ©2023 IEEE
DOI 10.1109/ICPADS60453.2023.00242

20
23

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Sy
st

em
s (

IC
PA

D
S)

 |
97

9-
8-

35
03

-3
07

1-
7/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
PA

D
S6

04
53

.2
02

3.
00

24
2

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

remote attestation methods: the Private Certificate Authority

(PCA) and Direct Anonymous Attestation (DAA) schemes [8],

[9]. To make the service transition smooth and improve the

user experience and efficiency of the cloud platform, multiple

cooperative services need to be verified simultaneously. How-

ever, it is not possible to verify several cooperative services in

a short period using traditional attestation methods.

Collective remote attestation technology provides a new

direction for addressing the challenges of multiservice at-

testation. This technology can verify a number of devices

in a relatively short time. Thus far, most collective remote

attestation technologies have focused on the low-end group

of devices in the IoT, and these schemes typically require a

static network topology to be maintained throughout the attes-

tation process. For example, in the SANA collective remote

attestation protocol [10], attestation results are aggregated by

intermediate nodes. A parent node must receive the attestation

results from all its children before it can continue to send attes-

tation replies to the upper layers. However, in a cloud-edge-

end cooperation environment, the network topology changes

dynamically owing to task offloading and resource-allocation

strategies. To date, there is a lack of viable methods for users to

verify multiple cooperative services with dynamic topologies

quickly. This study aimed to leverage the idea of collective

remote attestation to design a multiservice attestation scheme

suitable for a cloud-edge-end cooperation environment that can

improve the verification efficiency of users for edge and core

cloud services while ensuring system security.

In this paper, we present a collective remote attestation

scheme for a cloud-edge-end cooperation environment. The

solution is based on a Boneh-Lynn-Shacham (BLS) multisig-

nature [11] and modifies SANA [10] for the cloud-edge-end

cooperation environment. This enables users to verify the

reliability of multiple cooperative services quickly. We call

our scheme “scalable layered cooperative service attestation

(SLCSA).” The contributions of this study are as follows.

• To the best of our knowledge, the SLCSA scheme is the

first collective remote attestation protocol proposed for

cloud-edge-end cooperation environments. The SLCSA

scheme can not only quickly and effectively verify all

the cooperative services used by the users of a cloud

platform, but also detect malicious cooperative services

to safeguard user privacy and system security. Moreover,

it does not require the network topology to remain static

during the attestation process.

• The SLCSA uses multisignatures to improve the verifica-

tion efficiency. The cooperative service acts as a prover

to generate a public–private key pair and sends it to the

cloud platform administrator for registration.

• We implement the SLCSA protocol using the Intel SGX

technology [12]. The running time of each phase of the

protocol is also evaluated. In addition, we analyze the

security of the protocol. This proves that the proposed

solution can be integrated into large cloud platforms as a

basic service. When users need to verify a large number

of cooperative services simultaneously, they can invoke

our protocol to verify multiple services quickly.

The remainder of this paper is organized as follows. In

Section II, we discuss related works on traditional one-to-

one remote attestation and collective remote attestation. We

introduce the system assumptions and adversary model in

Section III. Section IV presents the preliminaries and nota-

tions. Section V describes the SLCSA protocol. Subsequently,

we present the performance results of the SLCSA scheme in

Section VI. A security analysis of SLCSA is conducted in

Section VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

Traditional remote attestation can be divided into three

major types: software-based, hardware-based, and hybrid.

Software-based attestation [13] does not require the device to

have secure hardware. However, these schemes are based on

assumptions that are difficult to realize in reality. Hardware-

based attestation schemes [14] have stronger safety, yet, secu-

rity hardware is complex and costly. The third hybrid scheme

[15] combines software and hardware. They are designed to

reduce the hardware security features that are needed for

secure remote attestation. All of these techniques work only

in a one-to-one environment. Therefore, these solutions are

difficult to scale.

Current one-to-one RA schemes can not attest to a number

of devices in a short period. To tackle this issue many

researchers have started developing attestation schemes, which

we refer to as Collective Remote Attestation (CRA) scheme.

Asokan et al. proposed SEDA [16], the first CRA technique,

in 2015. The idea is that the verifier performs attestation over

an overlay of spanning trees. However, it is assumed that

during the attestation phase, the network topology is static.

Ambrosin et al. presented a new multisignature scheme, called

SANA [10]. It is enabled to aggregate attestation results across

the network via untrusted aggregators. However, SANA intro-

duces a severe computation overhead for low-end embedded

devices in the IoT.

Ibrahim et al. proposed DARPA [17] as an attempt to

improve SEDA [16] to detect physical attacks. SCAPI [18]

is an improved version of DARPA [17]. While DARPA [17]

and SCAPI [18] are capable of defending against stronger

attackers, they require provers to be available at all times to

receive periodically exchanged messages.

To support device mobility during the attestation phase,

Kohnhauser et al. proposed SALAD [19] for highly dynamic

swarm topologies. In addition, SARA [20] enables asyn-

chronous verification of a large number of interconnected IoT

devices. However, SARA is restricted to small IoT services.

In recent years, some researchers have also proposed several

blockchain-based CRA schemes [21]. These solutions are

capable of providing trusted and distributed mechanism for

IoT environments [22]. However, blockchain brings in a lot of

calculation and storage expenses, which is difficult for low-end

devices.

1742

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: System model and topology in a cloud-edge-end

cooperation environment.

The above-mentioned solutions are for the low-end devices

in the IoT. We apply the idea of using multisignatures for

batch attestation of devices in SANA [10] to this paper for a

cloud-edge-end cooperation environment.

III. SYSTEM AND ADVERSARY MODEL

A. System Model and Entities

There are four major categories of entities in the SLCSA.

The whole network can be divided into three layers: Core

Layer, Edge layer, and End Devices Layer. When attesting, a

variable topology is generated with the user as the root node,

as depicted in Fig. 1.

• The Network Operator (O): O is the operator of the

entire network and is responsible for the deployment and

maintenance of all devices in the network. O is required to

initialize all devices before proceeding with the attestation

protocol. O is also a trusted authority (TA) responsible for

distributing public key tokens for each cooperative service

to be verified, through a key registration protocol.

• The end devices, i.e., Users (Ui): In a cloud-edge-end

cooperation environment, the end device is the user of the

cloud platform. These devices may have high mobility.

As a result, there are multiple edge and cloud servers to

provide them with services. Users act as verifiers and

send attestation requests to the cloud platform before

uploading their data to ensure the security of their data.

After receiving the attestation signatures from cooperative

services, users aggregate the signatures to quickly verify

that the cooperative service is in the correct state.

• The edge cloud services, i.e., Provers (Pi): As the primary

provers in a cloud platform, edge cloud services are

typically provided by edge servers deployed near the user,

which are powerful devices with greater computation abil-

ity and storage capacity than the users. Users usually up-

load the data to the edge cloud for processing first. They

are also responsible for forwarding attestation requests

from users and signature results from the upper core cloud

services. They generally do not have enough memory

and processors to implement complex operations, such

as deep learning. At this point, they pre-process the data

and send it to the core cloud services.

• The core cloud services, also, Provers (Pi): The core

cloud services are also part of what makes up provers,

which are generally farther away from the user but have

greater computing and storage capacity than edge cloud

services. Core cloud services and edge cloud services are

complementary. When there is user data that the edge

cloud cannot handle, it can be handed over to the core

cloud.

In our proposed scheme, O assigns the appropriate coopera-

tive services to the users. The services (i.e., provers) assigned

to users are variable. However, it doesn’t mean that the service

assigned during the attestation process is changeable.

B. Adversary Model
An adversary’s primary goal is to cause damage to the co-

operative service provided by the cloud platform. In this way,

it steals the data uploaded by the user or terminates the normal

operation of the service. Moreover, the adversary A does an

effort not to be detected by the attestation mechanism. We,

along with many other collective remote attestation schemes,

consider only software adversaries (AdvSW) as defined in

[23]. This type of adversary has the ability to run malicious

code or firmware on a device.
We do not consider Mobile Software Adversary (AdvMSW),

i.e., adversaries that can hide the traces of their intrusion. We

also disregard physical adversaries, i.e., adversaries are capable

of mounting side-channel attacks or capturing the device(s).

They can extract the cryptographic material.
In the actual situation, users of the cloud platform may be

controlled by adversaries. Denial-of-service (DoS) attacks are

achieved by continuously sending attestation requests to the

cloud platform. In general, DoS attacks are hard to mitigate.

This attack is outside of our current scope.

C. Security Goals
Following the collective attestation literature, we list the

following goals that we aim to achieve through the SLCSA

protocol. A secure collective remote attestation protocol should

possess the following goals:

• Successful Attestation: The primary goal of SLCSA is to

enable users to successfully verify all cooperative services

provided by the cloud platform. The user can verify the

operation status of all the cooperative services assigned

to them.

• Unforgeability and Freshness: Unforgeability ensures that

the attestation result is a true reflection of the state of

the cooperative service. This attestation result cannot be

tampered with by the adversary. Moreover, the freshness

of the attestation result can prevent the adversary from

replay attacks.

• Scalablity: Since the cooperative services assigned to the

users are not fixed and may change, the SLCSA solu-

tion must support the joining or leaving of cooperative

services.

• Information of the Individual Services: In SLCSA, users

should not only have the ability to verify all cooperative

1743

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

services but also have the ability to find out the compro-

mised service(s).

• Parallel Execution: SLCSA must support multiple paral-

lel or overlapping attestation protocol instances.

D. Security Assumptions

We assume that all Pi have a Trusted Execution Environ-

ment (TEE) to correctly achieve secure remote attestation.

A software integrity measurement mechanism is required,

while measurement and generated reports cannot be tampered

with by A. This report can demonstrate reliability from the

underlying hardware to the service. TEE can also ensure that

the Pi’s private key used for signing is not leaked and that the

protocol runs correctly. For our solution, we assume that each

Pi has a secure enclave that can be successfully verified by

the network operator O.

IV. PRELIMINARIES AND NOTATIONS

Let |M| denote the number of elements in a finite set M. If

n is an integer (or a bit-string) |n| indicates the bit-length of

n. Let m
R← M denote the assignment of a uniformly sampled

element of M to variable m. Furthermore, let {0, 1}l be the set

of all bit-strings of length l. If E is some event (e.g., the result

of a security experiment), then Pr[E] denotes the probability

that E occurs. Probability ε(l) is called negligible if, for all

polynomials f , ε(l) ≤ 1/f (l) for all sufficiently large l ∈ N.

Let F be a probabilistic algorithm. Then y ← F(x) means that

on input x, F assigns its output to variable y.

V. SCHEME DESCRIPTION

Our signature scheme is based on the BLS multisignature.

The details of the signature scheme are described in Section

V-A. Furthermore, in Section V-B, we introduce the specific

process of the proposed protocol.

A. Pairing-Based Signature Schemes

In the following part, we describe the multisignature scheme

used in this paper. Since the user’s location may change in

our scenario, the cooperative services to be used are not fixed.

There may also be a loss of response during the signature

process. To facilitate the increase and removal of services and

the verification of the final aggregate signature, we choose to

use a pairing-based aggregated multisignature.

Our signature scheme requires: 1) Let G1,G2,Gt be

multiplicative groups of prime order p with generators g1,

g2, gt, respectively, with an efficiently computable bilinear

pairing e : G1 × G2 → Gt so that e(gx1 , gy2) = gxyt for all x,

y ∈ Zp; 2) a hash function H0 : {0, 1}∗ → G1.

Parameters Initialization. PIn(ω) initializes a multiplicative

bilinear group (p, G1, G2, Gt, e, g1, g2, gt) ← Γ(ω) and

outputs par ← (p, G1, G2, Gt, e, g1, g2, gt).

Key Generation. KGe(par) generates the public key pki
← gski

2 by randomly choosing a secret key ski
R← Zp and

outputs (ski, pki).

Key Aggregation. The key aggregation algorithm KAg(pkn,

pkm) for two individual public keys pkn, pkm, outputs apk
← pkn·pkm.

Key Deletion. The key deletion algorithm KDe(apk, pki)
for the aggregate public key apk and the individual public

key pki, which is already aggregated in apk, outputs apk
′ ←

apk/pki.

Signing. This requires only one round of interactive

communication. The signing algorithm SIG(par, ski, pki, m)

computes a signature σi on the message m : σi ← H0(m)ski ,

and outputs σi.

Signature Aggregation. Aggregating several individual

signatures σ1, σ2, ... , σn can be done by computing σ ←
σ1·σ2 · · · σn. The signature aggregation algorithm SAg({σ1,

σ2, ... , σn}) outputs σ.

Verification. The verification algorithm VER(par, apk, m,

σ) verifies an aggregate signature σ under message m by

computing e(σ, g2) = e(H0(m), apk). If so, then outputs 1,

otherwise outputs ⊥.

B. Remote Attestation Protocol Based on Multisignature

Our attestation protocol consists of five main phases: 1)

each entity in the whole network is initialized in a trusted

environment by the network operator; 2) cooperative services

request public key tokens from the network operator; 3) the

user of the cloud platform verifies the validation of the token

and computes the aggregated public key; 4) After broadcasting

a clear request to the edge cloud, the user can send an

attestation request to the cooperative services for verifying and

the cooperative service computes the signature based on the

received attestation request and its own state; 5) user verifies

the aggregated signature using the aggregated public key.

Initialization. The network operator (O) first determines a

security parameter ω of the entire network and the system

parameter par is generated by PIn(ω). Then O performs a

traditional remote attestation with the enclave in each Pi.

When a new cooperative service is joined, O also conducts a

remote attestation with its enclave. After successful attestation,

a secure channel is established between O and the enclave.

Afterwards, each service (Pi) provided by the cloud platform

is initialized by O, and a legal measurement report Ri is

added to each Pi. The report stores the correct parameter

information for all software configurations for Pi. Then, O
provides a unique session identifier qi for each Ui. It is used to

prevent duplicate attestation. Finally, O assigns the appropriate

cooperative service to Ui, adding the identity idi of the service

that Ui may use to the Ui’s local storage set Si. Moreover,

the legal measurement report Ri for each Pi is also added to

the Ui’s local set RSi. Finally, each Pi initializes its set of

session identifiers Qi to an empty set.

Key registration. To enhance the security of the whole

system, all cooperative services have to apply for a public

key token Ti by executing a protocol KeyReg (see Fig. 2)

with O. Ti = {idi, pki, pk′
i, texp, σT } contains the expiration

1744

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

period of the key currently used by the service, and only

signatures generated by keys within the expiration period can

be verified successfully. In detail, when a new cooperative

service is available or when the currently used key expires, in

order to obtain the legal key pair used in the signing phase, Pi’s

secure enclave first executes the algorithm KGe(par) to obtain

a new secret and public key pair (ski
R← Zp, pki← gski

2) based

on par. If this service is newly offered or to be reassigned,

it will set pk
′
i = ⊥. Otherwise, enclave will assign the value

of the last expired public key to pk
′
i. Enclave generates the

current measurement report R
′
i and signs it with the newly

generated key. Then Pi’s enclave gets πi (πi ← H0(R
′
i)
ski)

and sends idi, the new public key pki, the expired public key

pk
′
i, as well as the πi to O through the secure channel. O then

verifies the validity of πi, and if e(πi, g2) = e(H0(Ri), pki),
O will assign an expiry time texp ← tnow +Δt to this public

key according to the actual situation. Afterwards, O computes

a signature σT on idi, pki, pk
′
i, and texp using O’s secret

key skO — SIG(par, skO, pkO, idi|pki|pk′
i|texp). We use

the BLS signature for the signature algorithm here. Of course,

since no aggregation is involved in the key registration phase,

other secure signature algorithms can be used. Then O sends

Ti to the corresponding cooperative service. If pk
′
i = ⊥, O

assigns the service to the users who need it before sending

the token Ti. It means that during the key registration phase

O may update Si and RSi of some users. Once Pi obtains

the token, it will broadcast its identity idi and Ti in the end

devices layer after validating the token.

Attestation preparation. As shown in Fig. 2, Ui computes

the aggregate public key in advance by the protocol Prepar in

the attestation preparation phase. In the subsequent attestation

process, Ui can quickly perform batch attestation of multiple

Pi. Upon receiving the public key token information (idi, Ti)

broadcast by the cooperative service, Ui accepts this message

if idi is in its local set Si. Ui first verifies if texp is greater

than the current time, and then verifies the signature σT in

the token by using O’s public key pkO — VER(par, pkO,

idi|pki|pk′
i|texp, σT). If both are valid, pki is added to the

locally stored aggregate public key and the set PSi. The public

key information stored in the set PSi contains the expiry time

of these public keys. If pk
′
i = ⊥, Ui executes KAg(apk, pki)

directly, otherwise, Ui performs KDe(apk, pk
′
i) first and then

KAg(apk, pki). If O removes a cooperative service Pi from

assignment to a user, the user first removes idi of Pi from

Si. Then, KDe(apk, pki) is executed. Ui also updates the set

PSi synchronously as shown in Fig. 2. At the end of the

attestation preparation, Ui sends a clear request Clear(qi) to

the edge cloud. The edge cloud then forwards the request to

the core cloud in the upper layer. On receipt of the request,

Pi removes qi from its set Qi of session identifiers. Pi only

receive clear requests during the preparation phase.

Attestation signature. The protocol AttSig is initiated by

Ui. As soon as the user is ready for attestation, software

integrity verification can be performed on the edge and core

cloud services (see Fig. 3). First of all, Ui confirms the coop-

erative services to be verified and their software configuration

information based on the set Si = {id1, ... , idn} and RSi

= {R1, ... , Rn}. The set RSi is then hashed into one single

message Rd ← H2(R1| ... |Rn) and H2 is an arbitrary hash

function H2 : {0, 1}∗ → Zp. Next, Ui delivers the attestation

request Req = {N, qi, Si, Rd} to the edge cloud services that

may be used. N is a random challenge value chosen by Ui;

qi is the session identifier; Si is the set of services assigned

to Ui and Rd is used as part of the default message. After

sending the attestation request, Ui chooses a reasonable time

tend ← tnow+δt to stop receiving responses based on network

latency, bandwidth, number of services, and other factors.

When Pi receives the attestation request, it first checks whether

its idi is in Si. Discard the request if idi /∈ Si, otherwise

(idi ∈ Si) check if the session identifier qi of the current

attestation request exists in the set Qi. If qi ∈ Qi, the request

is discarded, if not (qi /∈ Qi), qi can be appended to Qi. The

session identifier is stored in the set Qi until the next attestation

preparation and qi is necessary to protect the network against

replay attacks. If the service is an edge cloud service, the

request will be broadcast to the core cloud service in the upper

layer. After that, it proceeds to the next phase.

As a next step in the protocol, each Pi’s enclave generates

its own measurement report R
′
i. If R

′
i is a benign configuration

report (i.e., R
′
i = Ri), enclave creates a BLS signature σi over

the default message M = Rd|N |qi — SIG(par, ski, pki,
Rd|N |qi). Otherwise (R

′
i �= Ri), instead of signing, enclave

adds its own public key pki to the set Bi. Then the signature

σi and the set Bi of the edge cloud service are sent directly

to Ui along with idi. Meanwhile, the response from the core

cloud service is forwarded to Ui through the edge cloud.

Signature verification. As shown in Fig. 3, when Ui

receives an attestation response, it first checks the validity of

the public key pki corresponding to the signature σi in the

response. Ui checks whether the public key pki has expired. If

the verification is not successful then the response is discarded.

After tend, Ui no longer receives responses and aggregates all

responses received. For all the signatures σ1, ... , σn, which

are signed over the same default message M = Rd|N |qi, they

can be aggregated into a single BLS signature σM using the

algorithm SAg({σ1, σ2, ... , σn}). For all the set B1, ... , Bn, Ui

simply computes BM ← B1∪ ...∪Bn. For Pi whose idi is in

Ui’s locally stored set Si, but from which Ui has not received

a response, Ui stores its public key pki in the set K. After

that, Ui computes the temporary aggregate public key apkM
for this attestation depending on BM and K — KDe(apk, pki)
for all pki ∈ BM ∪K. Finally, Ui uses apkM to verify σM

— VER(par, apkM , M , σM). If the verification succeeds and

BM ∪K = ∅, Ui concludes that all the cooperative services

are trustworthy. If BM ∪K �= ∅, Ui also learns the identity

of all bad services according to BM and K.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the computation, communi-

cation, and storage overhead of SLCSA. We consider cryp-

1745

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Protocol KeyReg and Prepar.

tographic operations, including exponentiations in G1, G2,

Gt, and pairing operations, that are denoted as EX1, EX2,

EXt and P , respectively. In addition, we denote HA1 as the

operation, hashing to G1. Multiplications in G1 and G2 are

denoted as MU1 and MU2, respectively. |G1|, |G2|, and |Gt|
are denoted as the size of corresponding group elements. The

signature scheme used by Pi to participate in remote attestation

is BLS multisignature as adopted in [11]. In addition, the

signature scheme used by O to sign the public token Ti is

BLS as adopted in [24]. We denote n as the number of total

cooperative services to be verified by a user Ui.

We simulate SLCSA on an Intel NUC10i7FNH with an Intel

Core i7-10710U 1.10 GHz processor and 16 GB memory. We

use the Intel SGX technology [12] to implement a Trusted

Execution Environment on the cloud side, which provides

hardware-assisted isolation of system components with real-

time execution. Isolation is the basis for protecting crucial

components from accidental access by other possibly rogue

components. We put part of the code and data of the attestation

protocol into the SGX Enclave so that only trusted components

can access the protocol’s secret data such as the code of

KeyReg protocol, AttSig protocol, and the BLS secret key

ski.

Our SLCSA scheme implementation is simulated over the

BN254 pairing-friendly elliptic curve [25] in Miracl Core

library [26], which provides a 128-bit security level. The size

of G1, G2, and Zp in the BN254 curve is 512 bit, 1024 bit,

and 256 bit, respectively.

A. Key Registration

The key registration mainly involves interactions between

Pi and O. For Pi, it generates its own BLS key pair and

computes the signature πi over the current measurement report.

Then, it sends the key registration request to O and verifies

the response. Pi needs to conduct one EX1, one EX2, two

HA1 and two P . For O, it verifies the correctness of πi and

generates a BLS signature on the public token Ti. As a result,

O needs to conduct two P , two HA1, and one EX1 for each

Pi. According to Table I, the computation overhead is 3.79

ms for Pi and 3.28 ms for O to negotiate a token, which is

feasible in the real world.

TABLE I: Performance of SLCSA algorithms.

Function Run-time (ms)

KeyGen 0.72
SigGen 0.47
SigVerify 2.77
TokenGen 0.51
TokenVerify 2.60

For the communication overhead, O receives a request

Req = {idi, pki, πi, pk
′
i} sent by Pi and returns a token Ti

= {idi, pki, pk′
i, texp, σT }. Our SLCSA implementation has

1746

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Protocol AttSig and SigVer.

a signature size of 64 bytes. In addition, the identity idi of Pi

is 2 bytes, the public key is 128 bytes, and the time value is

8 bytes. Therefore, a request Req consists of 322 bytes and a

response consists of 330 bytes.

For the storage overhead at Pi, it stores the new key pair

(ski, pki), the expired public key pk
′
i, the public key pkO, and

the token Ti as shown in Table II. Since O is the operator of

the network, we do not consider its storage overhead.

TABLE II: Complexity analysis of key registration.

Computation Storage

Pi EX1 + EX2 + 2HA1 + 2P
|Zp|+|G1|+3|G2|
+|idi|+|texp|

O EX1 + 2HA1 + 2P ∗

B. Attestation Preparation

Ui obtains the aggregate public key used to verify the

aggregate signature through Prepar protocol. Once Ui receives

the public key token Ti for the cooperative service, it will

first verify the validity of the token, which results in a

linearly increasing computational overhead with the number

of Pi as shown in Fig. 4. This overhead is a maximum of

n · (HA1 +2P). We denote nT as the number of cooperative

services sending tokens in the preparation phase. So, Ui needs

to conduct nT · (HA1 + 2P). Afterwards, Ui computes an

aggregate public key and the run-time for aggregating keys is

shown in Fig. 5. During this phase, Pi has no computational

overhead.

For the communication overhead, the edge cloud service

broadcasts its token Ti at the end device layer while the core

Fig. 4: Run-time of verifying public key tokens.

Fig. 5: Run-time of aggregating public keys.

cloud service sends the token to the edge cloud at the lower

layer. Edge cloud forwards tokens from the upper layer to

broadcast in the lower layer. At the end of Prepar protocol,

Ui sends a Clear(qi) request to Pi and we set qi to 2 bytes.

Pi makes changes to the set Qi that stores qi based on this

request.

1747

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

As shown in Table III, for the storage overhead at Pi, it

stores a set Qi of unique global session identifiers. This set

can help Pi resist replay attacks and also prevent Pi from

repeatedly computing signatures. Since Ui needs to store the

set Si of Pi’s identity, the set PSi of Pi’s public key, and pki’s
expiry time, the storage overhead for Ui is mainly affected by

n. Besides, it stores the session identifier qi, the public key

of O, and the aggregate public key apk, which has a constant

size of 128 bytes.

TABLE III: Complexity analysis of attestation preparation.

Computation Storage
Pi ∗ |idi|+|Qi|
Ui nT · (HA1 + 2P +MU2)

(n+ 2)|G2|+|qi|
+n(|idi|+|texp|)

C. Attestation Signature and Signature Verification
The two phases mainly involve communication between Ui

and Pi. For Ui, it generates Rd based on the set RSi using a

hash function H2 and chooses a random nonce N . We consider

these computational overheads are negligible compared to the

cryptographic operations on the curve. When an attestation

request is received, Pi generates a signature σi and a set Bi

based on the software integrity measurement report. We put

this part of the attestation protocol code into enclave so that

Pi can generate σi and Bi correctly. Therefore, Pi only needs

to conduct one EX1 and one HA1 for a request and the

computational overhead for generating a response is just 0.40

ms. For Ui, it aggregates the received signatures and generates

a temporary aggregate public key apkM . Ui uses apkM to

verify the aggregate signature. We denote nM as the number

of cooperative services participating in generating the BLS

multisignature. Therefore, Ui still needs to conduct one HA1

and two P .
As shown in Fig. 6(a), we compare the overhead of signature

verification with and without aggregation. Ui can verify 10

cooperative services in just 1.77 ms with aggregation and this

advantage expands as the number of cooperative services to be

verified increases. In Table IV, we compare the computation

overhead of SLCSA and SANA [10] during the attestation

phase. The computation overhead in this phase mainly consists

of signature generation and signature verification. For Ui, our

solution has the additional computation overhead of aggregat-

ing signatures. However, when the number of signatures is

relatively small, this overhead is almost negligible compared

to the overhead of verifying the signature. In Fig. 6(b), we

assume that all services provided by the cloud platform are

working properly (i.e., no cooperative services are compro-

mised by adversaries) and show a comparison of the runtime

in the attestation phase using the SLCSA and SANA schemes.

Disregarding the impact of network latency, it is seen that our

solution is able to verify multiple edge and core cloud services

more quickly in the cloud-edge-end cooperation environment.

For the communication overhead, Ui starts the attestation

protocol by sending a request Req = {N, qi, Si, Rd} to the

(a) Run-time of verification with/without aggregation.

(b) Comparison of the runtime of the attestation phase between SLCSA
and SANA [10].

Fig. 6: Performance evaluation of the attestation phase.

TABLE IV: Comparison of the computation overhead of the

attestation phase between SLCSA and SANA [10].

Pi Ui

SLCSA EX1 +HA1 (nM − 1)MU1 +HA1 + 2P

SANA [10] EX1 + 2HA1 + 2P
+mMU1

a HA1 + 2P

a m denotes the number of neighbor nodes of Pi.

edge cloud. This request is then forwarded by the edge cloud

to the core cloud. In our SLCSA implementation, we set N to

lN = 32 bytes and Rd is a 32 bytes hash value. So, the request

is 66 + 2n bytes. After generating a signature, Pi returns a

response including σi, Bi, and idi. As a result, the response

is a maximum of 68 bytes.

For the storage overhead at Pi, it stores idi, ski, and Qi.

Moreover, it also stores the correct measurement report Ri,

which can be a 32 bytes hash value. In Table V, the storage

size of Ui grows with the number of Pi to be verified.

In summary, since the BLS multisignature requires only one

communication round, this greatly reduces the communication

TABLE V: Complexity analysis of attestation signature and

signature verification.

Computation Storage

Pi EX1 +HA1
|idi|+|Qi|+|G1|
+|Zp|+| Ri|

Ui (nM − 1)MU1 +HA1 + 2P
(n+ 1)|G2|+|BM |+|qi|
+n(|G1|+|idi|+|texp|)

1748

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

overhead of Ui and Pi. More importantly, the use of multisig-

nature can greatly improve the efficiency of remote attestation.

Furthermore, we use the Intel SGX technology to implement

a trusted execution environment, which is supported by most

Intel CPUs. It demonstrates the feasibility of our scheme in

real-world applications.

VII. SECURITY OF SLCSA

The security goal of SLCSA is for a user to declare

the cloud platform to be trustworthy, if and only if all the

cooperative services provided by the cloud platform have the

correct software configuration. We formalize this goal as a

security experiment ExpA among an adversary A, Ui, Pi, and

O. We present five possible attack strategies that could be

implemented by A and analyze the possibility of success for

each of these strategies. In the security experiment ExpA, A
attacks cooperative services in the cloud platform and modifies

the program code of at least one service PA. In addition,

A can eavesdrop on, delete, and modify any message sent

from PA. After a polynomial number (in terms of the security

parameters lN , ls, and lc) of steps by PA, Ui outputs its

decision result = 1 indicating that attestation of the services

to be used is successful, or result = 0 otherwise. The result

of the experiment is defined as the output of Ui, i.e., ExpA
= result. A secure collective remote attestation scheme is

defined as follows:

Definition 1 (Computational co-Diffie-Hellman Problem). For
a groups G1= 〈g1〉, G2= 〈g2〉, of prime order p, define
Advco−CDH

G1,G2
of an adversary A as

Pr [y = gαβ1 : (α, β)
R← Z

2
p, y ← A(gα1 , g

β
1 , g

β
2)],

where the probability is taken over the random choices of A
and the random selection of (α, β). A(τ, ε)-breaks the co-CDH
problem if it runs in time at most τ and has Advco−CDH

G1,G2
� ε.

co-CDH is (τ, ε)-hard if no such adversary exists.

Theorem 1 (Security of BLS Multisignature Scheme).
BLS multisignature scheme is an unforgeable multisignature
scheme under the hardness of the co-CDH problem (Definition
1) in the random-oracle model.

Proof of Theorem 1. Owing to the length of the proof of

Theorem 1, we do not describe it in detail in this paper.

The reader may refer to [11] for the security proof of BLS

multisignature scheme.

Definition 2 (Secure Collective Remote Attestation). A col-
lective remote attestation scheme is if Pr [result = 1|ExpA(1l)
= result] is negligible in l = f(lN , lbls, lsign), where the
function f is polynomial in lN , lbls, and lsign.

Theorem 2 (Security of SLCSA). SLCSA is a secure collective
remote attestation scheme (Definition 2) if the underlying BLS
multisignature scheme is not forgeable (Theorem 1).

Proof (sketch) of Theorem 2. Ui returns result = 1, i.e., all

the edge and core cloud services to be used are running a

benign software configuration initialized by the operator O of

the network only if VER(par, apkM , M , σM) ∧ BM∪K = ∅,

where par is the system signature parameter and apkM is

the BLS aggregate public key of all cooperative services that

participate in generating the BLS multisignature. σM is the

aggregate signature over message M and M = Rd|N |qi is

the default signature message. Rd is the hash digest of the set

Si, N is a random nonce, and qi is the unique global session

identifier of Ui. BM and K are the sets of public keys that did

not participate in generating the BLS multisignature. To avoid

detection of a compromised service PA, A can use one of the

following strategies: 1) A modifies the software configuration

of PA but does not tamper with the response from PA; 2) A
uses an old response (idi, σold, Bold, Ti) previously generated

by PA on the benign measurement report; 3) PA discards the

correct response and generates a BLS signature over the good

measurement report as the response; 4) PA forges a public key

token TA of pkA to send to Ui during Prepar protocol and

signs the default signature message M using A’s secret key

skA; 5) PA forges a pair of keys and sends the public key to

O to request a valid public key token.

We start with strategy 1). According to the assumption made

in Section III-D, A cannot tamper with the software integrity

measurement mechanism and the measurement report on PA.

In addition, PA has the security hardware that provides a TEE

to ensure that the PA’s secret key ski is not leaked and that

the protocol code runs correctly. Consequently, PA does not

sign the default message M , but adds PA’s pki to the set

BM . If the underlying integrity measurement mechanism that

generates the measurement report can detect this modification

(i.e., R
′
i �= Ri), Ui will always return result = 0.

Next, we consider strategy 2), where A uses an old response

of PA. The old signature σold over the old default signature

message Mold = Rd|Nold|qi as well as the old set Bold are

sent to Ui. Bold may be the empty set and Ti may still be

valid. However, VER(par, apkM , M , σM) will be equal to

1 only if N = Nold, which is negligible in lN , where lN
represents the size of the nonce. Consequently, Ui will always

return result = 0.

According to strategy 3), A may generate a BLS signature

over the default signature message M = Rd|N |qi. Since N
is a fresh nonce sent by Ui, the probability of A signing

M is negligible in lN . Consequently, as BLS multisignature

scheme is unforgeable according to Theorem 1, the probability

of forging such a signature is negligible in lbls, where lbls
represents the security parameter of multisignature scheme.

Then, we consider strategy 4), where A forges a public key

token TA of (skA, pkA). After receiving the token Ti sent

from Pi, Ui verifies whether the signature σT signed by O
in the token is valid. This means that A must forge σT to

make Ui accept. Owing to the selective forgery resistance

of the signature scheme, the probability of forging such a

signature is negligible in lsign, where lsign represents the

security parameter of the signature scheme selected by O.

Finally, we consider strategy 5), according to the assumption

1749

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

made in Section III-D, each Pi has a secure enclave. During the

key registration phase, O communicates with the enclave over

a secure channel and checks the measurement report before

issuing the token. Because of the isolation of the enclave,

A cannot tamper with enclave’s internal protocol code and

is unable to send his forged key to O through the enclave.

Therefore, it is impossible for A to obtain a valid token.

Therefore, the probability of A making Ui return result =
1, when it maliciously modifies the software configuration of

at least one service Pi provided by the cloud platform, is

negligible in lN , lbls, and lsign.

VIII. CONCLUSION

In this paper, we propose SLCSA, the first practical and

secure attestation protocol for verifying multiple cooperative

services in cloud-edge-end cooperation environments. The

SLCSA scheme improves the efficiency of attestation by using

a BLS multisignature to accelerate signature verification. We

demonstrate the efficiency of the SLCSA scheme through a

comprehensive performance evaluation. We perform security

analysis to demonstrate the security of the SLCSA against

software-only attacks. We demonstrate the feasibility of our

scheme by implementing it using the SGX technology, which

is currently supported by the majority of Intel CPUs. In future,

we will explore collective remote attestation in cloud-edge-end

cooperative environments. We can incorporate the “heartbeat”

protocol [17] into our scheme to optimize the SLCSA for

defending against more powerful physical adversaries.

ACKNOWLEDGMENT

The work was supported in part by the National Natural

Science Foundation of China (62272002, 62202005), in part by

the Excellent Youth Foundation of Anhui Scientific Committee

(2108085J31), in part by the University Synergy Innovation

Program of Anhui Province (GXXT-2022-049).

REFERENCES

[1] Radouan Ait Mouha. Internet of things (iot). Journal of Data Analysis
and Information Processing, 9(2):77–101, 2021.

[2] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo
Calheiros, Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman
Javadi, Luis Miguel Vaquero, Marco AS Netto, et al. A manifesto
for future generation cloud computing: Research directions for the next
decade. ACM computing surveys (CSUR), 51(5):1–38, 2018.

[3] Fengqun Wang, Jie Cui, Qingyang Zhang, Debiao He, Chengjie Gu,
and Hong Zhong. Blockchain-based lightweight message authentication
for edge-assisted cross-domain industrial internet of things. IEEE
Transactions on Dependable and Secure Computing, 2023.

[4] Xiaokang Wang, Laurence T Yang, Xia Xie, Jirong Jin, and M Jamal
Deen. A cloud-edge computing framework for cyber-physical-social
services. IEEE Communications Magazine, 55(11):80–85, 2017.

[5] Yinxue Yi, Zufan Zhang, Laurence T Yang, Xiaokang Wang, and
Chenquan Gan. Edge-aided control dynamics for information diffusion
in social internet of things. Neurocomputing, 485:274–284, 2022.

[6] Lu Wei, Jie Cui, Hong Zhong, Irina Bolodurina, and Lu Liu. A
lightweight and conditional privacy-preserving authenticated key agree-
ment scheme with multi-ta model for fog-based vanets. IEEE Transac-
tions on Dependable and Secure Computing, 2021.

[7] Lei Ren, Yuanjun Laili, Xiang Li, and Xiaokang Wang. Coding-
based large-scale task assignment for industrial edge intelligence. IEEE
Transactions on Network Science and Engineering, 7(4):2286–2297,
2019.

[8] Trusted Computing Group. Trusted computing platform alliance (tcpa)
main specification version 1. 1b [r]. 2001.

[9] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Proceedings of the 11th ACM conference on Computer
and communications security, pages 132–145, 2004.

[10] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven,
Ahmad-Reza Sadeghi, and Matthias Schunter. Sana: Secure and scalable
aggregate network attestation. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 731–742,
2016.

[11] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-
key model and a general forking lemma. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 390–399,
2006.

[12] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

[13] Jin Cao, Tong Zhu, Ruhui Ma, Zhenyang Guo, Yinghui Zhang, and Hui
Li. A software-based remote attestation scheme for internet of things
devices. IEEE Transactions on Dependable and Secure Computing,
2022.

[14] Michał Kucab, Piotr Boryło, and Piotr Chołda. Remote attestation and
integrity measurements with intel sgx for virtual machines. Computers
& Security, 106:102300, 2021.

[15] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rat-
tanavipanon, and Gene Tsudik. On the toctou problem in remote
attestation. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2921–2936, 2021.

[16] Nadarajah Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, Matthias Schunter, Gene Tsudik, and Christian Wachsmann.
Seda: Scalable embedded device attestation. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 964–975, 2015.

[17] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza
Zeitouni. Darpa: Device attestation resilient to physical attacks. In
Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, pages 171–182, 2016.

[18] Florian Kohnhäuser, Niklas Büscher, Sebastian Gabmeyer, and Stefan
Katzenbeisser. Scapi: a scalable attestation protocol to detect software
and physical attacks. In Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pages 75–86,
2017.

[19] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. Salad:
Secure and lightweight attestation of highly dynamic and disruptive
networks. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 329–342, 2018.

[20] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V Mancini,
and Silvio Ranise. Sara: Secure asynchronous remote attestation for
iot systems. IEEE Transactions on Information Forensics and Security,
15:3123–3136, 2020.

[21] Lukas Petzi, Ala Eddine Ben Yahya, Alexandra Dmitrienko, Gene
Tsudik, Thomas Prantl, and Samuel Kounev. {SCRAPS}: Scalable col-
lective remote attestation for {Pub-Sub}{IoT} networks with untrusted
proxy verifier. In 31st USENIX Security Symposium (USENIX Security
22), pages 3485–3501, 2022.

[22] Muhammad Salek Ali, Massimo Vecchio, Miguel Pincheira, Koustabh
Dolui, Fabio Antonelli, and Mubashir Husain Rehmani. Applications of
blockchains in the internet of things: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 21(2):1676–1717, 2018.

[23] Moreno Ambrosin, Mauro Conti, Riccardo Lazzeretti, Md Masoom
Rabbani, and Silvio Ranise. Collective remote attestation at the internet
of things scale: State-of-the-art and future challenges. IEEE Communi-
cations Surveys & Tutorials, 22(4):2447–2461, 2020.

[24] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application
of cryptology and information security, pages 514–532. Springer, 2001.

[25] Thomas Unterluggauer and Erich Wenger. Efficient pairings and ecc
for embedded systems. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 298–315. Springer, 2014.

[26] Miracl core. https://github.com/miracl/core, 2022.

1750

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:29:06 UTC from IEEE Xplore. Restrictions apply.

