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DSChain: A Blockchain System for Complete
Lifecycle Security of Data in Internet of Things

Jie Cui, Yatao Li, Qingyang Zhang, Hong Zhong, Chengjie Gu, and Debiao He

Abstract—There is a growing concern about the complete lifecycle security of data in Internet of Things (IoT). This may cause privacy
and trust problems for users regarding data sources, data storage, and access control for data sharing. Blockchain is a valuable
solution to the above problems through distributed ledger technology, and it has been widely applied in various fields such as public
services, finance, and IoT. However, the data in IoT are characterized by a large quantity, large capacity, and timely response, and
existing blockchain systems only partially resolve them for data security and performance. We propose DSChain for IoT data security
to address the challenges mentioned above. Our system uses a certificateless signature to ensure a trusted data source and public
auditing to ensure the integrity of stored data while using ciphertext-policy attribute-based encryption to control access to shared data.
Moreover, we propose a packaging mechanism based on the Merkle Hash Tree that effectively improves system performance. We
implement the DSChain and provide a detailed analysis of performance and security. The experimental results indicate that DSChain
can achieve approximately 1,035 transactions per second on a single peer and is scalable.

Index Terms—Blockchain, IoT, certificateless signature, ciphertext policy, ABE, public auditing, data lifecycle security.

✦

1 INTRODUCTION

MANY smart terminals have emerged with the rapid
growth of the Internet of Things (IoT). Gartner pre-

dicts there will be 40 billion terminals in the IoT by 2025,
and the amount of data collected by terminals will exceed
80 ZB (1 ZB = 1021 bytes)1. The conventional approach uses
centralized services (e.g., private cloud) to manage terminals
and their data, which may increase the risk of misuse and
tampering with sensitive data. In addition, uncontrolled
access to these data leads to critical data security risks for
end users [1], which is unfavorable to the development
of IoT. Therefore, it is of great concern for the complete
lifecycle security of data.

Recently, the decentralized blockchain technology on
which Bitcoin [2] relies has attracted significant interest from
industries and academia. A blockchain is a decentralized
distributed database that links data blocks in an orderly
pattern and guarantees that the data are tamper-proof and
unforgeable through cryptographic techniques. Blockchain
technology has evolved to the 3.0 version [3], which brings
prospects for data security management in IoT [4]. There-
fore, integrating blockchain and IoT [5]–[7] is gradually
becoming accepted.
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Various schemes have attempted to apply blockchain
technology to the IoT field [8]–[10]. There are two well-
known types of schemes for building IoT applications using
blockchain. One is to build IoT applications based on exist-
ing blockchain systems, such as Ethereum [11] and Hyper-
ledger Fabric [12], which provide extended code instruction
execution environments. The code instruction, smart con-
tract in Ethereum and chaincode in Fabric, is deployed in the
blockchain system and executed by a virtual machine, which
allows users to program business logic [13]. However, they
are limited by existing blockchain systems; for example,
Ethereum limits the block size to a few megabytes (MB)
and gas spent, and Fabric can only store data on-chain.
The other is a native blockchain system built for IoT, such
as WaltonChain [14], IoTeX [15], and IOTA [16], which
are to address specific challenges. However, they weaken
the security features of blockchain and are not universally
applicable. Therefore, although the integration of blockchain
and IoT is rapidly developing and being accepted, some
challenges still cannot be neglected [17].

Trust and Privacy: The openness, transparency, and im-
mutability of blockchain can be a valuable solution for
identity privacy management and building trust [18]. Many
IoT applications require users to provide sensitive data (e.g.,
smart grid) for additional services, which puts the data at
risk of misuse. However, while users trust each other, they
also want their sensitive data to be protected [19].

Storage Capacity and Data Integrity: Some blockchain sys-
tems limit block size to a few MBs to reduce the latency of
accessing transactions. However, terminals usually generate
gigabytes (GB) of data at an actual time, and the capacity
limitation of block poses a considerable obstacle to the
integration of blockchain and IoT. Some solutions utilize
centralized servers to store large amounts of data. However,
not all centralized servers are trusted and may tamper with
data for their interests [20].
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Performance and Availability: The traditional chain-
structured blockchain uses a decentralized consensus mech-
anism, resulting in low throughput and unsuitable for large-
scale IoT applications. However, the novel directed acyclic
graph (DAG) structure blockchain improves process rate
by recording transactions asynchronously and concurrently,
which makes it unable to guarantee the ultimate consistency
of data simultaneously [21].

To address the above challenges, we design DSChain, a
blockchain system, to ensure the complete lifecycle security
of IoT data by integrating the certificateless signature (CLS),
ciphertext-policy attribute-based encryption (CP-ABE), and
public auditing (PA) paradigms. Data is stored using a com-
bination of on-chain and off-chain, improving the storage
capacity of our system. In addition, we use the Merkle Hash
Tree (MHT) structure for packaging multiple messages into
a transaction to improve system performance.

Our work makes the following contributions:

1) We clarify three significant challenges in the inte-
gration of blockchain and IoT. Accordingly, we pro-
pose DSChain, a blockchain system, and its integra-
tion scheme that integrates CLS, CP-ABE, and PA
paradigms to ensure the complete lifecycle security
of IoT data, which includes (i) a trusted source of
collected data; (ii) access control for shared data;
(iii) integrity of stored data. And the instances of
paradigms are substitutable.

2) We propose an MHT-based packaging mechanism
that uses message queue (MQ) middleware to pre-
process service requests and trigger packaging ac-
cording to a packaging policy. It satisfies the storage
requirement for large amounts of real-time data
and realizes lower latency and higher throughput.
Meanwhile, combining on-chain and off-chain stor-
age improves storage capacity and user privacy.

3) We implement the DSChain and provide a detailed
analysis of its performance and security. The experi-
mental results indicate that DSChain can achieve ap-
proximately 1,035 transactions per second (tps) on a
single peer and less than 200 ms data processing
latency. In addition, our system is scalable and can
be deployed using clusters to accommodate large-
scale IoT applications.

The remainder of this paper is organized as follows. We
analyze the motivation in Section 2 and then provide pre-
liminaries in Section 3. We describe the design of DSChain
in Section 4 and our integration scheme in Section 5. In
Section 6, we introduce our system mechanism. We provide
a full implementation of the DSChain in Section 7. We
present the performance evaluation and security analysis
in Section 8 and review related work on blockchain systems
in Section 9, followed by concluding remarks in Section 10.

2 MOTIVATION

IoT and blockchain technologies have recently rapidly de-
veloped and integrated with growing market demand. As
the data are the oil of IoT development, ensuring its com-
plete lifecycle security is crucial. In this section, we analyze
data security issues in IoT and review some blockchain
systems, then analyze the challenges and our design goals.

2.1 Data Security Issues

The IoT is a network that connects physical terminals to a
network so that they can upload and exchange data. Data
security management during the collection, storage, and
sharing phases is a widely publicized issue. However, the
inherent features of blockchain are underpowered in their
suitability to IoT applications [22].

2.1.1 Data Collection Issue
The data collected by terminals can make services more
efficient and benefit enterprises. Terminal manufacturers
usually use centralized services to manage mass termi-
nals and data, increasing the difficulty and cost of main-
tenance. However, users need to trust the manufacturers
completely [23]. Some manufacturers utilize a decentralized
blockchain system and certificates to guarantee a trusted
data source. However, managing mass certificates increases
maintenance difficulty and reduces performance [24]. The
CLS without public key certificates could simplify certifi-
cate management and facilitate deployment on resource-
constrained IoT devices. In addition, the key generation
center (KGC) only stores the partial private key of users
to enable traceability, which can guarantee a trusted data
source. The public-private key pairs of users are generated
locally and are not accessible by KGC, protecting user
privacy.

2.1.2 Data Storage Issue
With the massive emergence of data, it needs to be stored
securely and efficiently. Otherwise, the data value will be
vastly reduced. The conventional approach uses a central-
ized cloud storage service to manage the data. However, its
providers may tamper with data due to interests or mis-
chief, and the integrity and truthfulness of the data cannot
be guaranteed. The tamper-proof feature of blockchain is
suitable for solving centralization and trust problems [25].
However, the mass data stored on-chain increases its storage
pressure. Some blockchain systems use a combination of
on-chain and off-chain data storage to solve data capacity
problems [26]. To prevent off-chain sensitive data from
being viewed by unauthorized entities, it is necessary for
the blockchain system to provide the confidentiality of
data. In addition, the tamper-proof feature of blockchain
is underpowered to protect off-chain data, which could be
at risk of tampering. Users prefer to have the ability to
check the integrity of their data proactively or to regulate
the behavior of storage service providers through PA. A
blockchain-based PA for off-chain data could solve the trust
problem for users [27].

2.1.3 Data Sharing Issue
Data exchange conveys the data value [28], meaning that
data sharing effectively eliminates information isolation.
However, users expect data to be reasonably viewed and
used by permitted entities. When sharing data using a
traditional public key cryptosystem, the user must perform
multiple encryption operations for all receivers. Attribute-
based encryption (ABE) can avoid multiple encryption op-
erations on the same data, instead using attributes to specify
the access policy for the ciphertext. Generally, access control
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TABLE 1
The Comparisons of Different Blockchain Systems.

System Type Features Throughput
Data Lifecycle Security

Trusted
Source Confidentiality Access

Control
Off-chain
Storage Integrity

HIBEChain [31] Ethereum-based Gas Limit 32,000 tps2

FabZK [32] Fabric-based Permissibility Less Than Fabric
PrivySharing [33] Fabric-based Permissibility Less Than 200 tps
WaltonChain [14] Native Multi-chain 100 tps

IoTeX [15] Native TEE –
IOTA [16] Native Tangle Network 600 tps

Our Goals Native Cryptographic
Paradigms Higher

1 The tps denotes transactions processed per second.
2 The tps reaches 32,000 for the 6-ary case with 259 blockchains and 2,590 validators and reaches 170 for a leaf blockchain with (3,4)-threshold.

management relies on a central trusted entity, and data
security is at risk. The decentralization and traceability of
blockchain can solve trust problems of data sharing, which
is beneficial in resisting a single point of failure [29]. In
contrast, users prefer fine-grained access control over their
sensitive data [30]. CP-ABE allows the user to specify an
access structure whose attributes have logical relationships
that can be used for fine-grained and more flexible access
control. In addition, CP-ABE can effectively improve the
confidentiality and security of shared data.

2.2 Existing Schemes
We analyze the security issues of IoT data at different phases
in Section 2.1. We know that a trusted data source is a
prerequisite for data security; expanding on-chain storage
can effectively increase the blockchain storage capacity; the
confidentiality and integrity of the stored data can guarantee
the privacy of users; and users expect more permission
control over shared data. Therefore, we compare different
blockchain systems proposed by others to solve the above
problems. The result is illustrated in TABLE 1.

2.2.1 Based on Existing Blockchain Systems
Some blockchain systems provide extended code instruction
execution environments, which allow users to build IoT
applications to manage data securely. Wan et al. [31] pro-
posed an Ethereum-based HIBEChain to solve the terminal
identity problem in large-scale IoT. However, it is limited by
the block size and gas limitation of Ethereum, which leads to
long transaction confirmation latency and does not support
unstructured data storage that occupies large storage space.
Kang et al. [32] and Makhdoom et al. [33] proposed Fabric-
based blockchain systems, where the former achieves en-
crypted data storage and auditability, and the latter achieves
data access management by embedding access control rules
in smart contracts. However, they are limited by Fabric,
which puts heavy storage pressure to store huge amounts
of data on-chain.

2.2.2 Native Blockchain Systems for IoT
To address the specific challenges in IoT, some organizations
and institutions autonomously design and implement na-
tive blockchains for IoT. Waltonchain team [14] proposed to

use cross-chain technology to build an IoT business ecosys-
tem for trusted data sources, private chain data sharing, and
data traceability. However, it has weak performance and
does not support data integrity verification. IoTeX team [15]
proposed to ensure that the data source is trusted and
enhances user privacy by decentralizing identity. However,
it does not guarantee data confidentiality or support off-
chain storage. To improve blockchain system throughput,
Silvano et al. [16] proposed to use a Tangle network with the
DAG structure to confirm transactions. However, it reduces
the system’s security and does not support off-chain storage.

2.3 Challenges and Goals
The above issues are usually addressed by integrating mul-
tiple cryptographic protocols, such as CLS, CP-ABE, and
PA, which will increase the complexity of system design
under different regimes. It is crucial to design a scheme
that can integrate the above cryptographic protocols to ac-
commodate complex application scenarios. In addition, the
blockchain system performance is also worth our attention.
The integration scheme may face challenges such as reuse
parameters of different cryptographic protocols, authenti-
cation of requests, and workflow optimization. It will also
be a considerable challenge to support the pluggability and
scalability of cryptographic protocols at the system level.
Meanwhile, clarify system participants and their functions
to streamline workflows.

With the above challenges in mind, we summarize the
design goals to provide a system for the complete life-
cycle security of IoT data (see TABLE 1). Use decentral-
ized blockchain technology and pluggable cryptographic
paradigms to ensure a trusted data source, the integrity and
confidentiality of stored data, and fine-grained access con-
trol for shared data. Meanwhile, it provides a solution for
massive data storage while ensuring system performance
for large-scale IoT applications.

3 PRELIMINARIES

This section provides the basics on which our system re-
lies, including the Merkle Hash Tree and some systematic
terminology concepts.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3337093

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:25:10 UTC from IEEE Xplore.  Restrictions apply. 



4

3.1 Merkle Hash Tree

The Merkle Hash Tree (MHT) is a hash binary tree with at
most two subtrees per node, where the subtree is usually
named left subtree or right subtree. A leaf node of an MHT
is the hash of a data block, and a non-leaf node is the
hash of sub-nodes, where each node represents a piece of
structured data. The MHT has excellent features such as
integrity verification and fast data querying. Its structure
is described below:

• The MHT is a binary tree structure with all the
characteristics of a tree structure.

• The user inputs the value of the leaf node in MHT.
For example, the hash of the data block is used as the
value of the leaf node.

• The value of a non-leaf node is computed from the
value of its sub-nodes, usually using a specified hash
algorithm (e.g., SHA256 algorithm).

3.2 Terminology Concepts

We provide some systematic terminology concepts below
to make it more convenient to understand the design and
workflow of our system.

Channel: A channel is a specialized virtual subnet for
communication among peers and is used for private and
confidential transactions. The transactions in the blockchain
network (BCN) will only be transmitted and executed
within a single channel. It uses logical isolation techniques
to ensure that data, transactions, and nodes among channels
are invisible. The manager creates a channel, and only
trusted peers can join.

Message Queue: The message queue (MQ) is an inter-
application communication mode where messages can be
returned immediately after they are sent, and the messaging
system ensures reliable delivery of the messages. The queue
is a data structure that satisfies first-in-first-out, which
makes these messages strictly sequential. Its message retry
mechanism ensures the reliability of messages, while the
atomicity of delivering messages and the acknowledgement
mechanism ensure the ultimate consistency of distributed
transactions.

Publish-Subscribe Service: The publish-subscribe service is
a messaging paradigm based on MQ. Instead of sending
messages directly to specific recipients, the sender divides
them into different categories for recipients (i.e., subscribers)
to subscribe to. Similarly, subscribers can subscribe to one
or more categories of messages without caring about the
identity of the publisher.

Topic: The topic-based subscription is one of the ways to
receive categorized messages. All messages in the topic will
be pushed to its subscribers. Subscribers who subscribe to
the same topic will receive the same messages.

4 DSCHAIN DESIGN

This section presents an overview of the proposed system,
the transaction execution flow, the threat model, the hierar-
chical structure, and the consensus service.

4.1 Overview

We design the prototype blockchain system to guarantee
the complete lifecycle security of IoT data. Fig. 1 presents
our system model. It consists of three entities, which are
described in detail below.

Packaged 

Transaction

Consensus Service

Terminals

Peers

Off-Chain 
Storage

Push 
Message

Pull 
Message

Ch 1

...
Encrypted  

Data

Database

Message 
Queue

File 
System

...

Package 
Mechanism

TriggerBroadcast Delivery

Services
- Register
- Upload Data
- Data Sharing
- Public Auditing

Response

Ch 1 Ch 2

Invoke

Store

Load
Key

Fig. 1. System model.

• Terminal: Terminals are smart IoT devices with finite
computing and communication capabilities. Each ter-
minal has a unique decentralized identity (DID) in
the whole network and requests identity registration
from peers to obtain its partial key. Only authorized
terminals can connect to the BCN and send service
requests to peers.

• Peer: Peers run on cloud-based physical machines
with high-resource capacity, high performance, and
strong computing power and undertake most of the
computation of the BCN. Peers maintain key ser-
vices, including terminal identity registration, data
upload, data sharing, and public auditing. Usually,
the peers in a channel jointly process requests from
terminals, broadcast packaged transactions to con-
sensusers, and eventually append successful trans-
actions to the local ledger.

• Consensuser: The consensusers collectively maintain
the consensus service and a system chain. The con-
sensus service supports the logical isolation for chan-
nels and ensures the ultimate consistency of transac-
tions on a given channel. The system chain stores
configuration information for the entire BCN, and
system managers can dynamically update the con-
figuration.

4.2 Transaction Execution Flow

All peers and consensusers maintain the BCN to provide
services for terminals. For better understanding, we define
a complete transaction execution flow from the terminal
invoking the service to the BCN confirming the transaction.
We divide it into three parts, as shown in Fig. 2.
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Fig. 2. Transaction execution flow.

Part1: Before joining the BCN, the terminal submits DID
to the peer for identity registration ➀ and obtains a key
for its unique identity. For secure data sharing, the terminal
encrypts the raw data before uploading and embeds access
control rules in the ciphertext so that only entities that sat-
isfy the rules can decrypt the encrypted data. The terminal
uses the key to sign the encrypted data to enable data trace-
ability. Terminals can trigger public auditing ➀, which calls
for peers to verify the integrity of stored data and submit
the result to the BCN. Once peers receive service requests,
they verify the validity of requests based on the registration
information of terminals ➁ and return the result ➂.

Part2: Peers are responsible for processing service re-
quests and submitting the packaged transaction to the con-
sensus service. The peer maintains a database and a file sys-
tem to store the encrypted data, providing off-chain storage
services. When the peer receives a request from the terminal
to upload data, the encrypted data is stored off-chain, and
its key information msg is pushed into the MQ ➃. Once the
condition of packaging is satisfied, the peer pulls a fixed
amount i of messages MSG = {msg1,msg2, . . . ,msgi}
from the MQ ➄. Then, the peer packages MSG, channel
information, and the peer’s signature into a single transac-
tion tx using the MHT-based packaging mechanism ➅.

Part3: The peer broadcasts the tx to the consensus ser-
vice ➆. Peers usually subscribe to the topic topic of the latest
block and transaction information on their channel. When
the consensus service reaches a consensus on transactions,
they package all transactions into a block. The consensusers
delivery blocks to peers by a publish-subscribe service ➇.
Peers verify the validity of transactions after receiving the
latest block and append valid transactions to the local
ledger ➈. Meanwhile, peers also provide a publish-subscribe
service for transactions to terminals ➉.

4.3 Threat Model
In the BCN, the consensusers are not associated with specific
user data and only package transactions into blocks through
the consensus mechanism. Therefore, we assume that the
consensusers are fully trusted and cannot be compromised.
The adversaries considered in our system can be classified
into internal and external adversaries. Internal adversaries

are entities directly involved in the BCN, i.e., peers and
terminals, and external adversaries are entities not directly
involved in the BCN. Both internal and external adversaries
can initiate passive and active attacks. When initiating a
passive attack, an attacker may continuously obtain some
encrypted messages in the BCN and attempt to decipher
them. In an active attack, an attacker can access the data
in the channel, read, intercept, replay, modify, and forge
the data. In addition, an attacker can forge the identity of
terminals to initiate a DDoS and Man-in-the-Middle attack.

4.4 System Hierarchical Architecture

We design a system hierarchical architecture divided into
five layers, as shown in Fig. 3. As a whole, they provide
underlying services for the BCN.

Data Layer
Data Blocks

Hash Functions

Chain Structure

Merkle Hash Tree

Digital Signature

Cryptographic 
Protocols

Network Layer P2P 
Network

Transmission 
Mechanism

Verification 
Mechanism

Consensus Layer Solo

Contract Layer Container Execution Mechanism

Application Layer Account Asset Transfer Dapp

Raft PBFTPluggable 
Protocols

Fig. 3. System hierarchical architecture.

• Data Layer: The essence of blockchain is a decentral-
ized database, and the data layer is the infrastruc-
ture for reliable storage. It links data blocks with
a chain structure in an orderly pattern and ensures
data security and tamper-evidence through digital
signatures and cryptographic protocols. Meanwhile,
hash functions and MHT provide the ability to verify
and query transactions quickly.

• Network Layer: All nodes in the BCN compose a peer-
to-peer (P2P) network. Transactions are transferred
among nodes using the transmission mechanism,
which ensures reliable data transmission. The vali-
dation mechanism is used to verify the validity of
data to ensure system security.

• Consensus Layer: The consensus layer provides the
pluggable capability of the consensus mechanism.
It provides several consensus mechanisms for man-
agers, such as Solo, Raft [34], and PBFT [35]. The
consensus mechanism uses MQ to ensure transaction
consistency in the entire BCN, which improves the
success rate of transaction. This layer only sequences
transactions and packages them into a block.

• Contract Layer: The contract layer extends the
blockchain system, making the blockchain pro-
grammable. Smart contracts consist of automated
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script code instructions that execute various business
logic within the constraints of the system. They run
in containers mutually isolated from peers to ensure
trusted execution environments.

• Application Layer: Through this layer, the system can
be associated with various industries (e.g., IoT) and
use decentralized computing power to build trust
among entities. Individuals or organizations can cus-
tomize execution logic to extend the system accord-
ing to diverse business requirements, such as account
management and asset transfer.

4.5 Consensus Service

All consensusers collectively establish a general sequence
of transactions through the consensus mechanism. The con-
sensus service receives the arbitrary transaction tx broadcast
by the peer and verifies its validity. The valid tx is imme-
diately published to the MQ maintained by the consensus
service. The consensus policy is specified by the system
manager when initializing the BCN and configured in the
system chain. It can be set as follows: the total size of all
transactions (e.g., 6MB), the number of transactions (e.g.,
100), or the packaging timeout time (e.g., 2s). The manager
can also dynamically adjust the consensus policy. Once the
consensus conditions are satisfied, the assigned consensuser
consumes a list of transactions TX = {tx1, tx2, . . . , txj} (j
denotes the number of transactions) from the MQ. With no
concern for the execution logic of TX , the consensuser just
packages the TX into a block with a specified height. The
block also contains the consensuser’s signature and chan-
nel information. The consensus service provides a publish-
subscribe service, and peers can subscribe to the topic of
their channels. Then, it delivers the block to all peers in
the corresponding channel. Notably, the consensus service
is usually deployed using clustering to ensure its liveness
and scalability.

5 CONSTRUCTION OF INTEGRATION SCHEME

In this section, we introduce the CLS, CP-ABE, and PA
paradigms, which are generic and not limited to a specific
scheme. Then, we construct a data security integration
scheme using specific instances of the above paradigms as
samples.

5.1 Certificateless Signature

The certificateless signature (CLS) is a novel type of public
key cryptosystem. It not only retains the advantage of the
identity-based public key cryptosystem (ID-PKC), which
does not require public key certificates; but also solves the
key management problems inherent to ID-PKC and is easy
to deploy on resource-constrained devices.

A CLS paradigm involves three entities: the key gener-
ation center (KGC), the signer, and the verifier. There are
seven algorithms in a CLS paradigm, as described below.

1) CLS.Setup: The KGC initializes the system by run-
ning this algorithm. On inputting a security param-
eter λ, the algorithm outputs a system master key
msk and the system public parameters PP .

2) CLS.ExtPartialPvtKey: On inputting the master key
msk, the public parameters PP , and ID of the user,
the KGC computes the partial private key d and
sends it to the user through a secure channel.

3) CLS.SetSecretValue: The user takes as input the pub-
lic parameters PP and outputs a secret value x.

4) CLS.SetPubKey: Users execute the algorithm. Taking
as input the public parameters PP , the secret value
x, and outputs the public key PK.

5) CLS.SetPvtKey: Taking as input the public parame-
ters PP , the partial private key d, and the secret
value x, the algorithm returns the private key SK.

6) CLS.Sign: As input a message m, the public pa-
rameters PP , the signer’s ID, and the private key
SK, the signer calls this algorithm to generate a
signature σ.

7) CLS.Verify: The verifier runs this algorithm by re-
ceiving the signature σ, the public parameters PP ,
the signer’s ID, the signer’s public key PK, and the
message m. It outputs 1 or 0 to indicate whether the
signature is valid.

5.2 Ciphertext-Policy Attribute-Based Encryption

Attribute-based encryption (ABE) associates a ciphertext or
key with an attribute set and access structure, which can
be decrypted only if the attribute set satisfies the access
structure. According to this pairwise correspondence, ABE
can be divided into key-policy attribute-based encryption
(KP-ABE) and ciphertext-policy attribute-based encryption
(CP-ABE). However, CP-ABE is well adapted to build secure
data-sharing solutions in cloud environments.

There are four algorithms in a CP-ABE paradigm, as
described below.

1) CPABE.Setup: The algorithm takes as input a secu-
rity parameter λ. It outputs the public parameters
PK and a master key MK .

2) CPABE.Encrypt: Taking as input the public parame-
ters PK, the message M , and an access structure
A over the universe of attributes, the algorithm
encrypts M and produces a ciphertext CT . Assume
that the ciphertext implicitly contains A.

3) CPABE.KeyGen: The key generation algorithm in-
puts the master key MK and a set of attributes S
that describe the key. It outputs a private key SK.

4) CPABE.Decrypt: The algorithm inputs the public pa-
rameters PK, a ciphertext CT containing an access
structure A, and a private key SK for a set of
attributes S. If the set of attributes S satisfies the
access structure A, then the algorithm will decrypt
the ciphertext and return a message M .

5.3 Public Auditing

Public auditing (PA) is the verification of data integrity as a
way to ensure the security of stored data. Blockchain makes
it possible to automate audits and improve the efficiency
and quality of audits.

A blockchain-based PA scheme involves the data owner
(DO) and the cloud service provider (CSP). There are six
algorithms in a PA paradigm, as described below.
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1) PA.Setup: The DO takes as input a security pa-
rameter λ and outputs a public-private key pair
(PK,SK).

2) PA.TagGen: The DO runs the algorithm, using the
private key SK, the identity UID, and the encrypted
file F ′ as input, and outputs the tags τ of the F ′.

3) PA.Store: The DO signs the encrypted file F ′ as Φ
using SK and uploads them to the CSP.

4) PA.ChalGen: Run it to input the public key PK and
the identity UID to generate the challenge chal.

5) PA.ProofGen: The algorithm can be executed by a
public auditor (another DO). The public auditor
requests the CSP to construct an MHT based on the
challenge value chal and the file BID and generates
the proof Rcsp. Then, the public auditor queries the
records on the blockchain, constructs an MHT by
the tags of the encrypted files, and generates the
proof Rbc. Finally, the public auditor uses PK to
sign {Rcsp, Rbc} and returns it to the DO.

6) PA.VerifyProof: The DO checks whether Rcsp = Rbc.
If the equation holds, the data is integrity; other-
wise, the data is corrupted.

5.4 Our Integration Scheme
The above three cryptographic paradigms can address the
following issues: the trusted source of collected data, the
fine-grained access control of shared data, and the integrity
of stored data. To ensure complete lifecycle security of
IoT data, our scheme integrates the CLS, CP-ABE, and
PA paradigms mentioned above. Remarkably, our system
supports arbitrary specific schemes (instances) that satisfy
the above paradigms. In other words, we focus on the
functionality of instances rather than their design details.
System managers may replace the corresponding instances
during the compilation and deployment phases.

With that foundation, we clarify the system participants
and their functions and improve the interaction efficiency
by reusing public parameters and simplifying the system
workflows. We construct our data security scheme by inte-
grating Jia et al.’s CLS scheme [36], Waters et al.’s CP-ABE
scheme [37], and Li et al.’s PA scheme [38] as an example.
The following is a description of the specific example.

1) DS.SystemInit: Given a security parameter λ, choose
a bilinear group BG = (G,GT , p, g), where G and
GT are two multiplicative cyclic groups of prime
order p, and g is a generator. Choose two distinct
secure hash functions: h : {0, 1}∗ → Z∗

p and H is the
SHA256 hash algorithm. The peer chooses a random
number α ∈ Z∗

p and calculates the system public
key spk = gα. Return the system public parameters
PP = {BG, spk, h,H} and the system secret key
ssk = α.

2) DS.Register: Taking as input the system mas-
ter key ssk, the public parameters PP , and
the terminal DID didi, the peer runs the
CLS.ExtPartialPvtKey(ssk, PP, didi) algorithm
to get the partial private key di and returns it.

3) DS.GenKeyPair: Taking as input the public
parameters PP , the terminal DID didi, and
the partial private key di, the terminal runs

the CLS.SetSecretV alue(PP, didi) algorithm
to get the secret value xi, and then runs the
CLS.SetPvtKey(PP, di, xi) algorithm and
CLS.SetPubKey(PP, xi) algorithm to obtain
the public-private key pair (ski, pki).

4) DS.Sign: Taking as input the message M , the
public parameters PP , the terminal DID didi,
and the private key ski, the terminal runs
CLS.Sign(M,PP, didi, ski) to get a signature σ.

5) DS.Verify: Taking as input the signature of message
σ, the public parameters PP , the terminal DID
didi, the public key pki, and the message M , the
peer runs the CLS.V erify(σ, PP, didi, pki,M) al-
gorithm to verify the validity of the signature and
return the result {Result}.

6) DS.Encrypt: Taking as input the public parameters
PP , the message M , and the access structure A,
the terminal runs the CPABE.Encrypt(PP,M,A)
algorithm to get the ciphertext CT of M , where
CT contains A. In running the CPABE.Encrypt
algorithm, the key is generated based on a random
function and uses a one-time pad (OTP ), where
key ∈ Z∗

p . Encrypt the data using the AES sym-
metric encryption algorithm and return CT .

7) DS.GenDecryptKey: Taking as input the system mas-
ter key ssk and the set of attributes S of the data re-
ceiver, the peer runs the CPABE.KeyGen(ssk, S)
algorithm to compute the key key and returns it.

8) DS.Decrypt: Taking as input the public parameters
PP , the ciphertext CT , and the key key, the data
receiver runs the CPABE.Decrypt(PP,CT, key)
algorithm to decrypt the ciphertext CT . If the set
of attributes S corresponding to key satisfies A, the
message M can be successfully decrypted.

9) DS.GenTag: This algorithm generates audit tags for
the encrypted unstructured data CT . We know that
CT = {C1, C2, . . . , Cn}. The terminal runs the
H(Ci) hashing algorithm to get the hashtag τi,
where τ = {τ1, τ2, . . . , τn}. Return the hashtag τ .

10) DS.GenChal: Taking as input the public key pki
and the terminal DID didi, the terminal runs the
PA.ChalGen(pki, didi) algorithm to generate the
challenge chal and returns it.

11) DS.ProofGen: The audited node queries the locally
stored file based on the challenge value chal and the
file cidroot, constructs the MHT for the cidroot and
generates the proof Rpeer . The public auditor (that is
different from the audited node) queries the records
on the blockchain based on the chal and cidroot,
constructs the MHT by the hashtag of encrypted
files, and generates the proof Rbc. The result Rpeer

and Rbc are signed using pki of the terminal didi
and returned as a result. The Rpeer and Rbc are
signed by the audited node and the public auditor,
respectively, and returned as results.

12) DS.VerifyProof: The user (i.e., terminal) checks
whether Rpeer = Rbc and returns the result Result.
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6 SYSTEM MECHANISM

In this section, we describe the overall work of the system
mechanism in detail, as shown in Fig. 4. It contains six key
phases and covers the complete lifecycle of data.

IoT Terminals Peers Consensus Service

Initialization Phase

System initialization 

Commit to
system chain

Upload terminal information

Store terminal DID in mapping

Generate partial private keyGenerate public-private
key pair

Data Transmission Phase

Upload data

Data 
type

Encrypt data 

Splitting data into
data blocks

Structured 
data 

Unstructured 
data 

Encrypt data and
compute hashtags

Sign and upload

Store in file system

Verify 
validity

Data 
type

Data Storage Phase

Data Processing Phase

Store file information
in database

Structured 
data 

Unstructured 
data 

Push data information

Packaging policy

Message
Queue

Pull
message

Package
transaction

Packaging
mechanism 

Consensus
transaction

Package
block 

Delivering
block to peers 

Request shared 
data via DataID

Shared data receiver

Decrypt data using
its attribute set 

Query off-chain data
via DataID 

Check auth
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Data Sharing Phase

Data Auditing Phase

Periodically request
public auditing 

Query hashtags on the blockchain
and generate proof value 

Request audited peers
to generate proof values 

Verify and commit auditing result

Auditing policy

Fig. 4. The overall work of system mechanism.

6.1 Initialization Phase

Assumes a secure channel is established between terminals
and peers to exchange data and keys.

6.1.1 System Initialization
The authorized peer can create a channel, then run the
DS.SystemInit(λ) algorithm to obtain the public param-
eters PP = {G,GT , p, g, spk, h,H} and the master key
ssk. The peer will publish PP to the system chain and
keep ssk secret. Other authorized peers can join the created
channel and run the DS.SystemInit(λ) algorithm to do
the same thing. Remarkably, all peers within the channel
can synchronize the data from the system chain through a
transmission mechanism.

6.1.2 Terminal Registration
The terminal has a DID didi and identity-related material.
∪∞
i=0didi ⊆ DID, where DID is a superset of all terminals

that are connected to the BCN. Before connecting to the
BCN, the terminal sends an identity registration request

to the peer. The peer runs the DS.Register(ssk, PP, didi)
algorithm to generate a partial private key di and return it to
the terminal. Peers maintain a global mapping between the
partial private key and the terminal identity ide : didi → di,
which is shared with other peers in the channel through
the transmission mechanism. Then, the terminal runs the
DS.GenKeyPair(PP, didi, di) algorithm to compute the
public-private key pair (ski, pki) and manages it by placing
it in a secure key container or updating it periodically to
prevent a compromised-key attack.

6.2 Data Transmission Phase
To protect confidentiality and secure access control for
shared data, we encrypt data using the CP-ABE. According
to data sharing needs, terminals define the access structure
A. The data can be decrypted if the entity’s attributes satisfy
A. In addition, we use the CLS to ensure a trusted source
of data and its integrity. The raw data generated from
the terminals is usually in the form of stream data, which
will be processed by the edge gateway or edge computing
device into structured data (e.g., body temperature) and
unstructured data (e.g., surveillance videos).

Structured Data: In our system, structured data dataS
represents data that occupies little storage capacity and
is easy to express. For secure data sharing, the ter-
minal runs the DS.Encrypt(PP, dataS ,A) algorithm to
obtain the ciphertext CT . Then the terminal runs the
DS.Sign(CT, PP, didi, ski) algorithm to obtain the signa-
ture σt and uploads {CT, σt} to the peer.

Unstructured Data: Unstructured data dataU represents
data that occupies a large storage capacity and is diffi-
cult to express. Therefore, the terminal splits dataU into
n data blocks F = {f1, f2, . . . , fn} to facilitate transfer
and storage. The terminal runs the DS.Encrypt(PP, F,A)
algorithm to encrypt the F separately to get the cipher-
text CT , where CT = {C1, C2, . . . , Cn}. Then the ter-
minal runs the DS.Sign(CT, PP, didi, ski) algorithm to
sign CT separately and obtains the signature σt, where
σt = {σ1, σ2, . . . , σn}. For auditing purposes, the terminal
runs the DS.GenTag(CT ) algorithm to obtain the hashtag
τ , where τ = {τ1, τ2, . . . , τn}. After data processing, the
terminal uploads {CT, τ, σt} to the peer.

6.3 Data Storage Phase
We combine on-chain and off-chain to relieve storage pres-
sure and protect data privacy.

6.3.1 Off-Chain Storage
After receiving a service request from the terminal, the peer
queries the terminal registration information by mapping
ide and then runs the DS.V erify(σt, PP, didi, pki, CT )
algorithm to verify the legitimacy and integrity of CT . The
off-chain storage provides a relational database and a file
system to store CT , which the peer maintains. Remark-
ably, the CT will be broadcasted among peers through the
transmission mechanism. Even if some peers go offline, the
peers with copies of the data still provide data accessibility
and effectively reduce the risk of a single point of failure.
Meanwhile, multiple copies of data enable disaster recovery
when data stored in the peer is lost.
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File System: The file system stores unstructured data
based on content identity (CID), where the CID is used
to locate the data path pathcid. In addition, peers provide
computational capabilities for integrity verification, such
as constructing the MHT root of a dataset. The peer re-
ceives the encrypted unstructured data CT and calculates
its CID. The H(·) algorithm computes the CIDs cidblocks =
{H(C1), H(C2), . . . ,H(Cn)} of data blocks. The CID cidCT

of the CT is the MHT root constructed by cidblocks. After the
data is stored, the peer stores pathcid = ch, cidCT , cidblocks
as structured data in the relational database and submits its
key information msg to an MQ waiting to be packaged.

Relational Database: The relational database stores struc-
tured data, the key information of unstructured data, and
blockchain information. An example is shown in Fig. 5. A
data table has six columns: (1) ID denotes the identifier of
data computed using the H(·) algorithm; (2) Data denotes
the encrypted structured data CT or the key information
of unstructured data pathcid; (3) Type denotes the data
type, where TS denotes structured data and TU denotes
unstructured data; (4) TxID denotes the identifier of tx
that is the MHT root H(S1,2,...,i) of the MSG (see Fig. 6);
(5) PathProof consists of Path and Proof , where Path
denotes the serial number sn of the data in data blocks
and Proof denotes sibling nodes to the MHT path of the
data block; (6) Height denotes the height of the block the
transaction is in. When the peer receives the structured data
submitted by terminals or key information of unstructured
data submitted by peers, it creates a new record containing
fields < ID,Data, Type >. After executing the packaging
mechanism, the fields < TxID,PathProof > in the record
are updated. After the BCN successfully confirms the data,
the field < Height > is updated.

6.3.2 On-Chain Storage
The key information of off-chain data is stored on-chain,
which protects data privacy and integrity. As can be seen
from Fig. 5, the data’s key information is the other fields
other than Data, where the ID of structured data is H(CT ),
and the ID of the unstructured data is H(pathcid). After
the data packaging process (which will be introduced in
Section 6.4), the packaged transaction tx is recorded in the
BCN to guarantee the integrity of off-chain data.

ID Data Type TxID PathProof Height

Fig. 5. Data table structure.

6.4 Data Processing Phase

Many devices concurrently connect to the peer and submit
many real-time service requests, which may affect system
performance. Therefore, we propose an MHT-based packag-
ing mechanism using the MQ. To reduce the communication
overhead between the peer and the MQ, each peer maintains
an MQ and belongs to the same subnet.

6.4.1 Packaging Policy
The packaging policy is configured in the system chain and
is loaded by the peer when the channel is created. It can
be set as follows: the number of messages in the MQ (e.g.,
32), the total data size (e.g., 1MB), or the packaging timeout
time (e.g., 2s). The manager can dynamically adjust the
packaging policy according to the evolution of the business.

6.4.2 Packaging Mechanism
We propose an MHT-based packaging mechanism using the
MQ to reduce the pressure of on-chain storage and improve
system performance. After the peer stores the data off-chain,
it pushes its key information msg to the MQ. Once the
packaging policy is satisfied, the peer pulls a fixed amount
i of messages MSG = {msg1,msg2, . . . ,msgi} from the
MQ.

DataID Path Proof TxID
0

1

2

3

Packaged  
Transaction

DataID

Intermediate 
Branches

TxID

Data 
Blocks

Fig. 6. The packaging mechanism based on Merkle Hash Tree.

The steps to construct an MHT include that:

1) The S is used as data blocks msg to generate leaf
nodes using the H(·) algorithm;

2) The two neighboring leaf nodes are hashed, and the
result is used as the branch;

3) The two branches are hashed, and the procedure is
repeated, with the last one being the root node.

Generally, we set the packaging policy to i = 2x, x ∈
N∗ to decrease the number of hashes when building the
MHT. Eventually, the depth of the constructed MHT is
log2i + 1, i.e., x + 1. Without loss of generality, we as-
sume that x = 2, and Fig. 6 shows the MHT struc-
ture and the packaged transaction constructed using 4
data blocks. The dataset is Sexample = {S1, S2, S3, S4},
and the data is hashed to get the set of leaf nodes
Sleaf = {H(S1), H(S2), H(S3), H(S4)}. We stitch H(S1)
and H(S2) and hash it to get H(S1,2), and H(S3,4) is the
same. Finally, the root node Sroot = H(S1,2,3,4) is obtained
by hashing H(S1,2) and H(S3,4) after stitching. We package
the Sexample in the MHT into a single transaction tx that
contains the following: (1) DataID denotes the identifier
of the data; (2) Path denotes the serial number of the data
in data blocks; (3) Proof denotes sibling nodes to the MHT
path of the data block and can be used to verify the integrity
of the data; and (4) TxID denotes the identifier of the
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tx, which is the MHT root. At last, the tx is broadcast to
consensusers.

6.5 Data Sharing Phase
The collected data can be shared with others to enable data
availability and break the information isolation. However,
users will only feel secure and willing to share data if they
have complete control over their data. We encrypt data
using the CP-ABE, where the access structures implicit in
the ciphertext determine who can use the data.

6.5.1 Access Policy
To ensure that only legitimate entities can access the
shared data, the access policy S is part of the access
structure A, which is embedded in the ciphertext, and
they are stored off-chain. The S is the set of attributes
needed to decrypt the CT . Usually, the operator pre-
sets it inside the terminal. For example, only hospital
doctors or the patient himself can access the patient’s
medical information. The access policy is expressed as
S = {(Hospital&Doctor)|(PatientHimself)}, where &
denotes the AND logic and | denotes the OR logic.

6.5.2 Encrypt
An efficient encryption algorithm is more beneficial for
sharing data DATAs. The AES symmetric encryption al-
gorithm is more efficient than the public key encryption
algorithm. Moreover, encryption security is also essential for
data sharing, and the key of the AES algorithm is generated
using a one-time pad (OTP) algorithm. For the divided
unstructured data, the same key is used for all the data
blocks. The A is constructed by the S and the key, and only
entities satisfying the access policy can resolve key. The ter-
minal invokes the DS.Encrypt(PP,DATAs,A) algorithm
obtains the CT , and it uploads CT to the peer, which occurs
during the data transmission phase (see Section 6.2).

6.5.3 Decrypt
The authorized entity performs the decryption opera-
tion, and the peer cannot view the decrypted data. Be-
fore decrypting the shared data, the entity sends its
set of attributes S to the peer. The peer runs the
DS.GenDecryptKey(ssk, S) algorithm to compute the key
and returns it to the entity. Then, the entity sends a
view request for the data by uploading the data identifier
DataID to the peer. The peer queries the CT based on
the DataID and returns it to the entity over a secure
channel. The entity invokes the DS.Decrypt(PP,CT, key)
algorithm to decrypt the CT and obtain the shared data.
Only the entity that satisfies the data access structure can
decrypt the CT , for example, an entity with the attributes
STrue = {Hospital,Doctor}. However, an entity that has
the attribute SFalse = {Hospital,Nurse} cannot decrypt it.

6.6 Data Auditing Phase
The peers have the supreme permission to manage off-chain
data, and it is essential to protect the integrity and availabil-
ity of the data. After the BCN confirms the uploaded data,
the terminal can immediately invoke an auditing request

to verify the availability of the data. The terminals can
also periodically invoke an auditing request to verify the
integrity of the data.

6.6.1 Auditing Policy
An auditing policy is defined in configuration files and can
be dynamically updated on the system chain. The auditing
operation can be set to be executed quantitatively (e.g., 500
transactions) or periodically (e.g., once a day).

6.6.2 Auditing Procedure
The terminals initiate an auditing request running the
DS.GenChal(pki, didi) algorithm generates the chal-
lenge chal and submits it to the arbitrary peer. When
the peer receives an auditing request, it runs the
DS.ProofGen(didi, chal, pki, cidi) algorithm to obtain
{Rpeer, Rbc}. The Rbc represents the MHT constructed by
the arbitrary peer (public auditor with blockchain query
capability) through the hashtag of on-chain data. The Rpeer

represents the MHT generated by the audited peer (who
stores the copy of the data) based on off-chain data. Re-
markably, the Rpeer obtainment depends on the data type
being audited. The audited peer constructs an MHT for
structured data by querying the local relational database.
For unstructured data, it queries the file system. Finally, the
terminal runs the DS.V erifyProof(Rpeer, Rbc) algorithm
to verify the integrity of data and submits the result to
the BCN. The terminal can also immediately query the key
information of the on-chain data after the BCN confirms
the data. By comparing the results with local computations,
the terminal verifies the availability of the on-chain and off-
chain data.

7 IMPLEMENTATION

We implement the DSChain using Golang (v1.18.5) with
approximately 45,000 lines of code. Specifically, we imple-
ment our integration scheme with the GoWrapper 2, which
is a port of the pairing-based cryptography (PBC) library
(v0.5.14) 3. We implement the scheme on Type A curve
y2 = x3 + x over the field Fq , where the order p is 160
bits and the group size q is 512. The hash function H(·) is
instantiated with the SHA256 hash algorithm, and we use
the first 160 bits of the output; The hash function h(·) is
realized by using H(·) to obtain an element h′ ∈ Z∗

p.
Our system is a blockchain with a permission mech-

anism and chain structure. We use the open-source Go-
FastDFS4 as a file system to store unstructured data and
MySQL as a relational database to store structured data.
We choose LevelDB as a Key-Value database to index the
current state and transactions. We use RabbitMQ as an MQ
and queue information to distinguish the data type.

All nodes form the P2P network and classify the peer
affiliation according to the channel. The transmission mech-
anism uses the Gossip protocol [39], which is a decentralized
and distributed protocol. The messages are synchronized
among the peers, so it is the ultimate consistency protocol.

2. https://github.com/Nik-U/pbc
3. https://crypto.stanford.edu/pbc/
4. https://github.com/sjqzhang/go-fastdfs
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There are two verification mechanisms in our system. The
first is to verify the identity using a self-signed SSL/TLS
certificate issued by the manager. The other one is to use
CLS keys generated by peers, which is one-way verification.

Our system supports pluggable consensus protocols that
can be replaced according to different cases. To facilitate test-
ing, we adopt the Solo consensus mechanism, which uses
RabbitMQ maintained by consensusers as the sequencing
container for transaction consistency.

We use lightweight and portable Docker containers to
provide execution environments for smart contracts. Our
system can be extended by programming a concrete opera-
tion logic using Golang. The interface to the smart contract
infrastructure provides two operations:

• init(stub): The system will inversely call all imple-
mentation logic of this interface when loading smart
contracts, which will only be executed once.

• invoke(stub): The interface provides read-write op-
erations on the data within the smart contract and
allows users to design the execution logic within the
system’s constraints.

The stub in the above interfaces encapsulates the parameters
submitted by the invoker and the system information. Even-
tually, they will return the execution result to the invoker.

The configuration file specifies system parameters,
loaded after the system boots and uploaded to the system
chain. The system manager can dynamically update the
configuration, and the latest block specifies the current
configuration on the system chain.

8 EVALUATION AND ANALYSIS

This section evaluates the overhead of cryptographic proto-
cols and system performance. Then, we analyze the security
of the system and the integration scheme.

8.1 Environment Setup

We developed an automated testing tool using Golang
(v1.18.5) to help us evaluate our system. It allows setting
the sending rate and the duration of testing. Furthermore,
it runs ten rounds by default to reduce occasionality. In the
network, the loss of communication messages is inevitable,
so we set the tolerable failure rate (FR) to 1‰, which means
that one out of every 1,000 requests is allowed without a
response. In addition, considering the impact of response
time on user experience, we discard timeout (i.e., 3 seconds)
requests. Also, the system may fluctuate during runtime,
and we use the 5% error line to mark the average latency.

We use universal measurements to evaluate system per-
formance, which includes system throughput and transac-
tion latency. The latency indicates the time it takes for a
message to start from the terminal request to be confirmed
by the BCN. The typical definition of throughput: X = C

τ ,
where C denotes the number of completed transactions, and
τ denotes the time it takes to complete these transactions.

Without knowing the actual throughput, we first set the
sending rate in 100 tps step size to find a valid range for
the optimal throughput. Then, it is gradually approximated
within that range using a dichotomy. Finally, the certainty

of data occurrence is verified multiple times based on the
optimal throughput. Unless otherwise stated, we measure
the optimal performance with zero FR.

Unless explicitly mentioned differently in our experi-
ments: (1) All measurements are obtained from the testing
tool mentioned above, which runs on a terminal node;
(2) Nodes are hosted in AliCloud Elastic Compute Service
(ECS) and communicate with each other over 0.8 Gbps of
intranet bandwidth and a private network; (3) All nodes
run on Intel Xeon Platinum 8269CY 4-vCPU @ 2.50GHz vir-
tual machines (VMs) with Ubuntu 20.04 (64-bit) operating
system, 8 GB of RAM, and 20G of SSD (with 1,960 IOPS)
as a local disk; (4) A single node runs the Solo consensus
service, a channel contains one peer and one node emu-
lates the terminal, all on distinct VMs. Nodes communicate
securely using the SSL/TLS protocol. The node clocks are
synchronized with the AliCloud Network Time Protocol
(NTP) service during the experiment.

8.2 Performance Evaluation

The system’s performance determines what it can do, en-
abling analysis of whether it can support large-scale IoT
applications. We measure the overhead of cryptographic
protocols and then analyze the impact of different param-
eters on performance. Finally, we conduct a performance
comparison between DSChain and Fabric to demonstrate
the availability of our system.

8.2.1 Cryptographic Protocols Evaluation
To measure the impact of cryptographic protocols overhead
on transaction latency, we use the Benchmark testing tool
provided by Golang to evaluate the operations overhead in
the CLS, CP-ABE, and PA phases. We use the VM with 4-
vCPU and 8 GB of RAM mentioned above. The experimen-
tal results are shown in Fig. 7.

During data processing, message size may affect the sys-
tem’s processing rate. Without loss of generality, we increase
the message size from 1 KB to 4,096 KB for evaluation. From
Fig. 7a and Fig. 7b, when the message size is in the range of 1
KB and 512 KB, the time overhead of signature, verification,
encryption, and decryption is relatively stable. After 512 KB,
their time overhead begins to increase significantly. Since en-
crypting and signing messages occur together, we consider
the message size 512 KB more suitable for transmission.
The verification of messages by peers directly affects the
throughput, and at 512 KB, the verification overhead is
small. Therefore, the unstructured data can be divided into
512 KB blocks and uploaded in parallel to achieve better
performance. In Fig. 7b, the time overhead of encryption is
higher than decryption. The reason is that there is some time
consumption in constructing the access structure during
encryption. However, it occurs at the terminal, and the
impact on system performance is negligible.

When generating data hashtags by the terminal and
auditing by peers, constructing an MHT is a rather time-
consuming operation. We measure the time overhead of
constructing MHTs for message sizes of 64 MB, 128 MB, 256
MB, 512 MB, and 1,024 MB, respectively. Also, we increase
the data block size after splitting from 4 KB to 8,192 KB.
The experimental results are shown in Fig. 7c. We know
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Fig. 7. Overhead of cryptographic protocols.

that for a given data size, the data block size is inversely
proportional to the number of blocks after splitting. The
overhead decreases significantly when the data block size
is less than 64 KB. We analyze that too many data blocks
decrease rapidly, bringing the result. Remarkably, they all
show a dent at 512 KB, meaning splitting the file into 512 KB
has less overhead than 256 KB and 1,024 KB. A larger data
block size and many blocks cause high time overhead, and
512 KB is the optimal balance. Therefore, it is reasonable to
believe that 512 KB is a more suitable value for a data block
and that larger blocks are inconvenient for transfer.

Analyzing the above experiments, 512 KB is a significant
value due to its best overall performance in signature,
verification, encryption, decryption, and construction of
MHTs. We suggest limiting the size of the data uploaded
by the terminal to around 512 KB to achieve optimal system
performance.

8.2.2 System Performance Evaluation

We evaluate the impact of different factors on system per-
formance as detailed below.

Impact of block size on performance: Block size is a
critical factor that affects throughput and transaction la-
tency. To determine the required block size for subsequent
experiments, we increase the block size from 1 MB to 8 MB.
The experimental results are shown in Fig. 8a. Throughput
does not significantly increase after 6 MB, and the increased
latency is within acceptable limits. Moreover, the FR is no
longer zero when the block size exceeds 6 MB, which is
0.43‰at 7 MB and 0.89‰at 8 MB, respectively. The 6 MB
block contains a large number of transactions, which is
limited by the processing capacity of the consensus service
nodes. Once they cannot be processed promptly, the consen-
sus service will actively discard them, resulting in the FR.
Therefore, we adopt 6 MB as the block size for subsequent
experiments.

Impact of packaging mechanism on performance: The
peers pre-process data by building an MHT before pack-
aging them. To measure the impact of the number of data
blocks in the MHT on throughput and latency, we set the
number of data blocks by increasing exponentially with a
base of 2. Based on the previous experiment, we adopt the
block size of 6 MB and keep the same experimental settings.
We use three VMs running the consensus service, the peer,
and the terminal. The experimental results are shown in
Fig. 8b.

As can be seen, with data blocks from 2 to 32, the
throughput increases significantly with the increase of data
blocks in a linear correlation and reaches 1,035 tps at 32.
After 32 data blocks, the throughput no longer improves
significantly, accompanied by increased latency. When in-
creasing to 256, the throughput increases to 1,080 tps, the
latency rises to 804 ms, and the FR begins to appear. We are
more interested in 32 data blocks. The above results may be
related to the processing power of a single peer. It causes
some threads to be stranded within the system runtime
when exceeding 32 data blocks during the data packaging
process, which affects performance. In conclusion, after the
packaging process, the throughput increases from the orig-
inal 280 tps to 1,080 tps, demonstrating that our packaging
mechanism can effectively improve performance.

Impact of peer CPU and RAM on performance: To
analyze the optimal hardware facility for the system to be
stable running, we attempt to change the number of CPU
cores (vCPUs) and RAM size of the peer node. We set it with
4-vCPU and 8 GB of RAM as the baseline for comparison.
The experimental results are shown in Fig. 8c. When the
number of vCPUs increases to 8-vCPU, its performance
varies slightly. Then, we fix the vCPUs to 4-vCPU and
increase the RAM to 16 GB, which still has a slight variation.
The results indicate that increasing the hardware facility
does not effectively improve performance.

We know that the baseline setting is sufficient for the
system to achieve optimal performance, and then we try
out the minimum hardware facility for the system to stable
running. We degrade the hardware facility from the baseline
to 2-vCPU and 4GB of RAM, respectively, and see that the
throughput decreases from 1,035 tps to 1,010 tps, and the
latency is almost unchanged. Furthermore, we continue to
degrade the hardware facility to 2-vCPU and 4GB of RAM
and find that the throughput only drops by ten tps. In other
words, our system performs well enough with the hardware
facility of 2-vCPU and 4GB of RAM. We intend to continue
to degrade to clarify the impact of RAM size and vCPUs on
performance.

First, we degrade the hardware facility to 1-vCPU and
4GB of RAM. At this point, a noticeable reduction in
throughput occurs (approximately 750 tps). We analyze
that fewer vCPUs are unable to process intensive terminal
requests. Next, we continue to degrade the hardware facility
to 2-vCPUs and 2GB of RAM, and the throughput decreases
to approximately 560 tps. The RAM size has a greater impact
on performance than vCPUs. We speculate that the peer

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3337093

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:25:10 UTC from IEEE Xplore.  Restrictions apply. 



13

0

100

200

300

400

500

600

120

150

180

210

240

270

300

1 2 3 4 5 6 7 8

La
te
nc
y
(m
s)

Th
ro
ug
hp
ut
(tp
s)

Block Size (MB)

AVG Latency
Throughput

(a) Impact of block size on throughput and latency.

0

150

300

450

600

750

900

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128 256

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
(tp

s)

Number of Data Blocks in Merkle Hash Tree

AVG Latency
Throughput

(b) Impact of the number of data blocks on throughput and latency.

0

50

100

150

200

250

300

500

600

700

800

900

1000

1100

2-vCPU
2 GB

1-vCPU
4 GB

2-vCPU
4 GB

2-vCPU
8 GB

4-vCPU
4 GB

4-vCPU
8 GB

8-vCPU
8 GB

4-vCPU
16 GB

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
(tp

s)

Number of vCPUs and RAM Size

AVG Latency
Throughput

(c) Impact of peer CPU and RAM on throughput and latency.

0

100

200

300

400

500

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

La
te
nc
y
(m
s)

Th
ro
ug
hp
ut
(tp
s)

Number of Peers

AVG Latency
Throughput

(d) Impact of the number of peers on throughput and latency.

0

40

80

120

160

200

1000

1020

1040

1060

1080

1100

Solo Raft PBFT

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
(tp

s)

Different Consensus Mechanisms

AVG Latency
Throughput

(e) Impact of different consensus algorithms on system performance.

407

1035
1230

5985

140
148

10 4
0

30

60

90

120

150

180

210

0

1000

2000

3000

4000

5000

6000

7000

Fabric-write DSChain-write Fabric-read DSChain-read

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
(tp

s)

Read and Write under Fabric and DSChain

Throughput

AVG Latency

(f) Performance comparison between DSChain and Fabric.

Fig. 8. Impact of different parameters on throughput and latency.

needs to cache data while waiting for packaging, which
consumes RAM. Moreover, there is a brief RAM outage and
system instability when processing requests intensively. To
ensure system stability, we recommend running the peer
with a 4-vCPU and 8 GB of RAM, although running it with
a 2-vCPU and 4 GB of RAM is possible.

Scalability: To better apply our system to large-scale IoT
applications, we evaluate its scalability by increasing the
number of peers from 1 to 5. The experimental results are
shown in Fig. 8d. We increase to 2 peers, the throughput
reaches approximately 1,390 tps, and the latency shows
only slight variation, which is negligible. We continue to
increase to 3 peers, the throughput reaches approximately
1,570 tps, and the latency rises to 274 ms, which has little
effect on the system. When we increase to 4 and 5 peers, the
throughput reaches 1,750 tps and 1,810 tps, respectively, and
the latency rises to 447 ms and 547 ms, respectively. Notably,
while throughput increases, the rising rate decreases, and
the latency increases severely.

The throughput is linearly related to the number of peers
but not in a simple multiplicative way. We know that peers
and consensusers process the data from terminal submission
to confirmation. Multiple peers can achieve parallel pro-
cessing of most operations. However, a single consensuser
may reach the processing bottleneck. While increasing the
number of peers, increasing the corresponding number of
consensus nodes is also necessary to ensure the system’s
stability. Meanwhile, the experimental results demonstrate
that our system is scalable.

Impact of different consensus algorithms on system
performance: In Experiments 1–4, we used the Solo con-
sensus service provided by a single node to facilitate de-
ployment and testing. To verify the impact of different
consensus mechanisms on system performance and clarify
the consensus layer’s pluggability, we develop three typical
consensus mechanisms: Solo, Raft, and PBFT. Remarkably,
Raft as a crash fault-tolerant consensus protocol can tolerate
(n− 1)/2 crashed nodes, PBFT as a Byzantine fault-tolerant
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consensus protocol can tolerate (n−1)/3 evil nodes, where n
denotes the total number of nodes. The experimental results
are shown in Fig. 8e.

As shown in the previous experiments, the throughput
and latency are approximately 1,035 tps and 148 ms, respec-
tively, when using the Solo consensus mechanism with 6
MB block size and 32 data blocks. When switching to the
Raft consensus mechanism, the throughput and latency are
approximately 1,030 tps and 147 ms, and with PBFT, are
about 1,020 tps and 162 ms, respectively. These consensus
mechanisms have relatively little impact on performance.

We analyze that the above observation is related to the
workflow of consensus mechanisms. The Solo consensus
mechanism runs on a single node, sequences and packages
messages from peers according to a predefined policy, and
delivers blocks to the corresponding peers. The Raft con-
sensus mechanism consists of three roles: leader, candidate,
and follower. The leader receives messages from peers and
replicates logs to followers after consensus. If the leader
node is faulty, a new leader is elected after a heartbeat
timeout, and the impact on latency depends on the timeout
interval. Therefore, the Raft consensus mechanism is mainly
provided by the leader, while the replication of logs and
a leader election have little impact on performance. The
PBFT consensus mechanism is provided by a master node
and multiple slave nodes and consists of three phases: pre-
prepare, prepare, and commit. Increased communication
overhead leads to a higher latency and a lower throughput.

In summary, the experimental results demonstrate that
our system has pluggability and that the impact of Raft
and PBFT consensus mechanisms on system performance
is acceptable. Therefore, managers can choose different con-
sensus mechanisms to adapt to businesses.

8.2.3 Performance Comparison With Fabric
Our system is a blockchain with a permission mechanism
that secures the complete data lifecycle. To validate the
effectiveness of the proposed system, we conduct a perfor-
mance comparison between DSChain and Fabric. Fabric is
one of the most popular blockchain systems that supports
enterprise-level applications. It has access control, data iso-
lation, and scalability advantages, which are highly similar
to our system. Our system runs on three VMs with 4-
vCPU and 8GB of RAM, i.e., the consensus service, the
peer, and the terminal are on distinct VMs. Accordingly,
Fabric uses the same hardware facilities. They use the Solo
consensus mechanism. To more comprehensively compare
the differences between the two systems, we measure the
performance by reading (querying) and writing (invoking)
the transactions. The experimental results are shown in
Fig. 8f.

Blockchain as a distributed database, the performance of
write operations can more intuitively reflect its availability.
The throughput and latency of DSChain in invoking trans-
actions are approximately 1,035 tps and 148 ms, respectively,
while Fabric is about 407 tps and 140 ms, respectively. The
transaction latency of our system is 8 ms more than Fabric.
We use some computational overhead on the cryptographic
protocols (see Section 8.2.1) to secure the complete data
lifecycle. However, the throughput of our system is about
2.5 times that of Fabric, benefitting from the MHT-based

packaging mechanism we proposed. The query response
of a transaction is also an important factor in measuring
the performance. The throughput and latency of DSChain
in querying transactions are approximately 5,985 tps and 4
ms, respectively, while Fabric is about 1,230 tps and 10 ms,
respectively. The throughput of our system is approximately
4.9 times that of Fabric and has lower latency. It benefits
from the off-chain storage capability of our system, where
peers directly query relational databases and file systems
without parsing on-chain blocks. Overall, the performance
of our system is better than Fabric. Hence, it can better
process transactions in real-time and be used for large-scale
IoT applications.

8.3 Security Analysis
In conjunction with the blockchain prototype system and
the integration scheme, we provide a security analysis of
the blockchain network and the integration scheme.

8.3.1 Blockchain Security
DSChain is a decentralized distributed blockchain system,
and we assume that attackers can launch the following
attacks. We are not concerned about how attackers launch
different attacks but focus on defending the system against
these possible attacks.

Man-in-the-Middle (MITM) Attack: Our system is pro-
tected against MITM attacks using a public key cryptosys-
tem. We know that after the terminal registers its identity,
the peer only retains the partial private key, and the terminal
generates the public-private key pair locally. The terminal
keeps the private key in a secure key container, and the pub-
lic key is published to the BCN, guaranteeing the transmit-
ted data’s security by CLS. Since the attackers in an MITM
attack do not have the private key of the terminal, they
cannot obtain any plaintext information about the terminal.
They cannot tamper with the data during transmission.
Therefore, no one (not even a peer) can impersonate the
identity of the terminal.

Distributed Denial of Service (DDoS) Attack: Data is redun-
dantly replicated among all peers in the channel, resilient to
the failure of one or more nodes, increasing our system’s
availability. Also, the immutability of blockchain can be
used to manage IoT devices and their data. The peers can
check the registration information of terminals to verify
all service requests. Denial of service to unauthorized IoT
devices can effectively prevent DDoS attacks.

8.3.2 Security Statement
As can be seen in Section 5, our integration scheme
is constructed by integrating the CLS, CP-ABE, and PA
paradigms. We consider differences and commonalities in
the design details of instances under those paradigms and
that the paradigms can standardize the instances. In other
words, arbitrary instances that satisfy our defined paradigm
can be integrated into our system. In our integration scheme,
given a security parameter λ, the DS.SystemInit algorithm
outputs the public parameters PP . Since PP are the com-
mon parameters for CLS, CP-ABE, and PA, it is strongly
required that instances of all paradigms use the same secu-
rity level of λ. In addition, our integration scheme keeps the
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structure of the defined paradigms intact. The threat models
of all paradigms are maintained unchanged. The specific
instance must satisfy the definition of the paradigm. There-
fore, the instance’s security will support itself, which is not
our primary concern. For example, in the CLS instance [36],
Jia et al. proposed that there may be a fake KGC threat
and a public-key replacement attack and provide detailed
security proof. Jia et al.’s scheme is consistent with the
CLS paradigm, and both Waters et al.’s [37] and Li et al.’s
schemes [38] are also. Due to the limited space, the security
proofs for each instance will not be explained in detail here.

8.3.3 Security Objectives Analysis
We analyzed the security objectives from a system perspec-
tive, as detailed below.

Trustworthiness: The CLS paradigm requires terminals to
submit trusted DIDs for registration, and only authorized
terminals can initiate service requests to peers. When a
malicious terminal threatens the BCN, peers can track the
terminal through its registration information. The traceabil-
ity of CLS can regulate the behavior of the terminals.

Confidentiality: In the CP-ABE paradigm, the ciphertext
is identified with access structure and the private key with
attributes. If the entities are not authorized, they cannot
view the information. The CP-ABE ensures that only if
the entity’s attributes match the decryption conditions can
decrypt the ciphertext. We also use the AES symmetric
encryption algorithm with higher encryption efficiency as
the secret value for CP-ABE, and its security is widely rec-
ognized. Also, to prevent entities from decrypting other files
by calculating the secret value, we use the OTP algorithm
to ensure that the relationship between data and key is one-
to-one. Even if the entity gets the key for that data, it cannot
decrypt others, ensuring the confidentiality of the data.

Privacy: We use a combination of on-chain and off-
chain to store encrypted data, which prevents attackers from
analyzing user behavior through ciphertext on the BCN. The
encrypted data is stored off-chain, and its key information
is stored on-chain, which ensures that the ciphertext is in-
visible. Meanwhile, the channel isolation technology allows
only entities within the channel to view the key information.

Integrality: A periodic audit of off-chain data can regulate
the behavior of peers. The off-chain stores encrypted data
and corresponding hashtags, and the validation path and
key information of data blocks are stored on-chain. MHT
has natural properties regarding fast integrality validation,
and corrupted data will not pass verification.

9 RELATED WORK

Recently, the rapid development of blockchain technol-
ogy has dramatically impacted politics, economics, culture,
and our lives. Melanie Swan divides the development
stages of blockchain into blockchain 1.0, blockchain 2.0, and
blockchain 3.0 [3]. The emergence of Bitcoin [2] marked the
arrival of the blockchain 1.0 era, which addressed the issues
of cryptocurrency and decentralization. Blockchain 2.0, rep-
resented by Ethereum [11], solved the market’s decentraliza-
tion problem, and smart contracts emerged. Blockchain 3.0
is the era of comprehensive blockchain applications, which
can build applications in various fields.

Existing blockchains are divided into three types ac-
cording to different degrees of openness: private, public,
and consortium. Bitcoin and Ethereum represent the public
blockchain, the consortium blockchain is represented by
Hyperledger Fabric [12], and the private blockchain is rep-
resented by AntChain5 proposed by Ant Group. Block orga-
nization structure is divided into chain structure blockchain
and directed acyclic graph (DAG) structure blockchain. Ex-
isting blockchains are mainly based on chain structure, such
as Bitcoin, Ethereum, and Quorum in order-execute mode
and Hyperledger Fabric in execute-order-validate mode.
To improve system performance, blockchains with a DAG
architecture emerge, such as IOTA [16] and XDAG6.

All peers in the P2P network communicate using prop-
agation protocols such as Gossip [39] and TeleHash. Some
blockchain systems extend system capabilities by provid-
ing the ability to execute scripts. For example, Bitcoin
provides a scripting language based on stack execution,
Ethereum provides smart contracts based on the Ethereum
virtual machine (EVM), and Fabric provides chaincodes
based on Docker containers. Consensus mechanisms are
key technologies to ensure transaction consistency, such
as proof of work (PoW), proof of stake (PoS), delegated
proof of stake (DPoS), Raft [34] and PBFT [35]. Crypto-
graphic protocols support the tamper-evident and data-
secure features of blockchain. Cryptographic protocols are
mainly divided into symmetric encryption algorithms (e.g.,
AES, DES, 3DES), asymmetric encryption algorithms (e.g.,
RSA, DSA, ECC), and hash algorithms (e.g., MD5, SHA1,
HMAC, SHA256), where symmetric encryption algorithms
are generally more efficient than asymmetric encryption
algorithms. Elliptic curve cryptography (ECC) and RSA are
frequently used asymmetric encryption algorithms, where
ECC can use shorter keys to achieve similar or higher
security than RSA.

10 CONCLUSION

There are many data security challenges in IoT, and we
propose DSChain, a blockchain system that can protect
the complete lifecycle security of data. We integrate a CLS
paradigm to ensure a trusted source of collected data, a CP-
ABE paradigm to achieve fine-grained access control for
shared data, and a PA paradigm to ensure the integrity
and availability of stored data. Meanwhile, we combine on-
chain and off-chain to store massive data, reducing stor-
age pressure and protecting user privacy. In addition, we
propose an MHT-based packaging mechanism to package
multiple messages into a single transaction to improve
system performance. We fully implement DSChain and
evaluate its performance regarding throughput and latency.
The experimental results indicate that DSChain can achieve
approximately 1,035 tps on a single peer and less than 200
ms latency. Furthermore, our system is scalable. Managers
can adjust the network scale according to requirements.

DSChain combines on-chain and off-chain storage to
reduce the storage pressure of the blockchain. However,
the data generated by IoT terminals will be immeasurable.

5. https://antchain.antgroup.com
6. https://xdag.io
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Our future work will focus on data security solutions and
optimizing data storage, for example, using data hierar-
chical storage and deduplication techniques to optimize
unnecessary data storage.
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