
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023 357

Efficient Batch Authentication Scheme Based on
Edge Computing in IIoT

Jie Cui , Senior Member, IEEE, Fengqun Wang , Qingyang Zhang , Chengjie Gu, and Hong Zhong

Abstract—In the industrial Internet of Things (IIoT)
environment (e.g., a smart factory), smart devices with limited
computing power can bring large amounts of privacy-sensitive
data into insecure networks when they interact. If a network
attacker intercepts and tampers with this data, it may cause
chaos in production and even paralyze the entire IIoT system.
Therefore, to ensure the regular operation of intelligent produc-
tion, data receivers must authenticate the data before using them.
However, existing message authentication schemes in the IIoT
environment authenticate each message individually, which cre-
ates many redundant operations. Hence, to ensure data security
among smart devices and reduce the computational overhead of
data processing, we propose a batch authentication scheme based
on edge computing in IIoT. Specifically, we design a lightweight
batch authentication algorithm and use edge servers to assist
smart devices in authenticating data, thus reducing the compu-
tational burden on smart devices and improving the efficiency
of message authentication. The security analysis shows that the
proposed scheme is secure in the random oracle model and meets
the series of security requirements of the IIoT. In addition, we
illustrate the efficiency of the scheme through experiments.

Index Terms—Industrial Internet of Things (IIoT), batch
authentication, edge computing, elliptic curve cryptography
(ECC), hash chain.

I. INTRODUCTION

IN RECENT years, the Internet of Things (IoT) [1], [2], [3]
has gained a significant amount of attention in the industry

because it provides a new way for people to communicate with
things, making it possible for industrial production to achieve
high yields with fewer risks [4]. The IoT terminology related
to industrial processes and industrial infrastructure is referred
to as industrial IoT (IIoT) [5], [6], [7].

Manuscript received 16 October 2021; revised 11 February 2022, 8 July
2022, and 8 September 2022; accepted 8 September 2022. Date of publica-
tion 13 September 2022; date of current version 7 March 2023. The work
was supported in part by the National Natural Science Foundation of China
under Grant 62272002 and Grant U1936220, in part by the Excellent Youth
Foundation of Anhui Scientific Committee under Grant 2108085J31, and in
part by the Special Fund for Key Program of Science and Technology of
Anhui Province, China under Grant 202003A05020043. The associate editor
coordinating the review of this article and approving it for publication was
X. Fu. (Corresponding author: Hong Zhong.)

Jie Cui, Fengqun Wang, Qingyang Zhang, and Hong Zhong are with the
Key Laboratory of Intelligent Computing and Signal Processing of Ministry
of Education, School of Computer Science and Technology, the Institute of
Physical Science and Information Technology, and the Anhui Engineering
Laboratory of IoT Security Technologies, Anhui University, Hefei 230039,
China (e-mail: zhongh@ahu.edu.cn).

Chengjie Gu is with the Security Research Institute, New H3C Group,
Hefei 230088, China (e-mail: gu.chengjie@h3c.com).

Digital Object Identifier 10.1109/TNSM.2022.3206378

Fig. 1. IIoT system based on edge computing.

In an IIoT environment, many heterogeneous smart devices
are deployed [8]. To flexibly allocate resources and intelli-
gently optimize production methods, these smart devices need
to share and process industrial data in real-time [9]. However,
with the rapid development of IIoT and the increasing network
scale, the number of smart devices and the amount of data
generated are increasing dramatically [10], which imposes a
heavy computational burden on resource-constrained smart
devices [11]. In addition, the IIoT system brings a large
amount of privacy-sensitive data into complex and insecure
networks that are vulnerable to network attackers, resulting in
data leakage or tampering. Therefore, ensuring the real-time
and security of IIoT data becomes paramount [12], [13].

On the one hand, ensuring the real-time of data in the IIoT
environment is crucial [14]. For example, video-based pro-
duction line monitoring data [15] needs to be responded to
on time; otherwise, it could lead to production lag and chaos.
In a typical IIoT environment (e.g., a smart factory), smart
devices directly process massive shared data [16], generating
a large computational overhead that cannot meet the high real-
time demand for the IIoT environment. Furthermore, if cloud
computing [17], [18] with very strong computing power is
used to assist smart devices in processing this shared data,
additional data transmission overhead will be generated [19].
Therefore, some researchers have introduced edge comput-
ing [8], [20], which is closer to smart devices. Fig. 1 shows
an IIoT system based on edge computing. In this system,

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7258-3418
https://orcid.org/0000-0003-2465-7982
https://orcid.org/0000-0002-2600-6748
https://orcid.org/0000-0002-0392-9734

358 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

smart devices with limited computing power and edge server
with strong computing power are deployed. The edge server is
responsible for collecting, filtering, analyzing, and forwarding
the data. And data can be shared between smart devices with
the same interest (e.g., production tasks). Although the edge
server can assist smart devices in computing, its computational
overhead is still very high in the face of massive amounts of
shared data.

On the other hand, ensuring data security in the IIoT
environment is vital. The reason is that if critical data are
compromised, the network attacker can (a) control the smart
devices in the IIoT system, (b) lead to chaos in produc-
tion, (c) cause unnecessary economic loss, and (d) even cause
safety accidents [21]. To ensure the security of the IIoT
environment, some researchers have pointed out that the confi-
dentiality and integrity of data need to be guaranteed first [22].
If data confidentiality is not guaranteed, network attackers
can obtain sensitive data, leading to compromised industrial
secrets. Suppose the integrity of the data is not guaranteed.
In that case, network attackers can tamper with IIoT data
without detection, which may lead to production chaos once
smart devices use these tampered data. Second, the unlinkabil-
ity [23] and anonymity [24] of data need to be guaranteed. If
the unlinkability of data is not guaranteed, network attackers
can infer some sensitive information from multiple data sent
by the same smart device through techniques such as machine
learning. If the anonymity of the data is not guaranteed, the
real identity of the smart device can be exposed, and network
attackers can launch targeted attacks on the smart devices.
Therefore, some researchers have proposed solutions for IIoT
message authentication [25], [26]. However, they can only
authenticate received shared data one by one, which is only
suitable for the IIoT environment with relatively low message
density. For the IIoT environment with high message den-
sity and high data real-time requirements, such as emergency
shutdown systems for smart devices, these schemes generate
significant computational overhead that cannot be ignored.

A. Our Motivations

From the above analysis, we understand that it requires
high security and real-time for the IIoT environment with
high message density (e.g., inside a smart factory). However,
this environment faces the following challenges: (1) malicious
network attackers trying to obtain factory privacy-sensitive
data and tamper with data, (2) the computing power of smart
devices is limited, but the data that needs to be authenticated
is massive, and (3) numerous redundant operations for authen-
tication in existing IIoT schemes. Therefore, we are motivated
to propose a security scheme that utilizes an edge server with
high computing power to assist smart devices in message
authentication and authenticate multiple messages in a batch.

B. Our Contribution

To solve the real-time and security issues in an IIoT system,
such as in a smart factory, we propose an efficient batch
authentication scheme in an IIoT environment based on edge
computing.

The contributions of our proposed scheme are the following:
• First, we design an efficient batch authentication

algorithm, which guarantees the confidentiality, integrity,
unlinkability, and anonymity of the data. Moreover, we
use edge servers to assist smart devices in message
authentication, reducing the computational pressure on
smart devices and improving authentication efficiency.

• Second, to reduce the cost of signing notification mes-
sages by the edge server, we design a lightweight sig-
nature algorithm based on the hash chain, which ensures
data security and reduces the cost of edge servers signing
notification messages.

• Finally, we demonstrate the security of our proposed
scheme through security proof and analysis. In addition,
we show the feasibility of applying our scheme in an IIoT
system through experiments.

The remainder of this paper is organized as follows.
Section II focuses on the existing work related to security
in IIoT. Section III presents the system model and objec-
tives of the proposed scheme. Section IV provides a detailed
description of the proposed scheme. The security proof and
analysis of the scheme are given in Section V. Section VI pro-
vides a detailed comparison and explanation in terms of the
authentication performance through experimental data. Finally,
Section VII presents the conclusions of the scope for future
research.

II. RELATED WORK

In this section, we introduce some message authentication
schemes in IIoT and analyze them.

Due to the complexity of the network in the IIoT envi-
ronment, the massiveness of data, and the limited computing
power of smart devices, the data privacy issues faced by
the IIoT environment are particularly prominent. To ensure
the security of data, related researchers have proposed many
solutions.

In 2018, Esposito et al. [27] adopted group signature tech-
nology to effectively ensure the confidentiality and integrity
of data. On this basis, Cui et al. [19] introduced the proxy re-
encryption technique to propose an authentication scheme that
guarantees anonymity while guaranteeing data confidentiality
and integrity. However, both of these schemes use bilinear
pairing, which only applies to the IIoT scenarios with low
data volume. In IIoT local area networks, due to the huge
amount of data, the overhead is huge if the message authen-
tication scheme is constructed using bilinear pairing, which
may exhaust resources such as smart devices with limited
computing power.

To address the above problem, some researchers used
lightweight elliptic curve cryptography (ECC) in IIoT envi-
ronments. For example, drone networks are often used in
the IIoT, and Hussain et al. [28] found that some current
schemes are not secure and inapplicable after analysis. To
solve the existing problems, Hussain et al. applied ECC to the
authentication scheme, allowing this scheme to meet security
requirements while effectively improving authentication effi-
ciency. In 2018, Li et al. [29] took into account the limited

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BATCH AUTHENTICATION SCHEME BASED ON EDGE COMPUTING IN IIoT 359

resources of smart device nodes in the IIoT environment and
proposed a privacy-protected IIoT user authentication protocol
based on ECC. This scheme greatly reduces the computation
cost caused by verification. However, in the face of massive
data in the IIoT environment, the above scheme can only ver-
ify the validity of one message at a time, which still consumes
a large amount of computational overhead.

Although there are few relevant batch authentication
schemes in the IIoT environment, batch authentication is
already widely used in many areas of the IoT. For example,
Xiong et al. [30] used ECC to design a lightweight authenti-
cation scheme that supports message receivers to authenticate
the validity of multiple messages at a time. Still, in this
scheme, smart devices directly perform batch authentication,
putting much computational pressure on them. To achieve
fast authentication of data uploaded by end devices without
exposing the owner’s sensitive data, Liu et al. [31] proposed
an anonymous batch authentication scheme. This scheme can
authenticate all end devices’ information simultaneously and
has confidentiality. In 2020, to protect data privacy when ana-
lyzing the smart grid users’ data, Guo et al. [32] proposed
a practical and lightweight aggregation scheme for the smart
grid. In this scheme, to reduce the computational overhead
of the system, the aggregation provider can perform batch
authentication of the encrypted data. However, the compu-
tational overhead of the above batch authentication scheme
is still relatively large. Faced with a huge amount of data
and to reduce the cost of message authentication to guarantee
real-time, Zhang et al. [33] proposed a batch authentication
scheme for vehicular networks. Like many batch authentica-
tion schemes in vehicular networks, this research ensures the
security of messages and reduces the overhead brought by
message authentication. However, the above batch authentica-
tion schemes do not consider the time consumption caused by
the edge server’s signature of the notification message, nor do
they provide specific signatures for the edge server.

III. SYSTEM MODEL AND OBJECTIVES

In this section, we introduce several aspects of the prelim-
inaries, system model, assumptions, and design objectives to
demonstrate the proposed scheme more clearly.

A. Preliminaries

In our proposed scheme, we use hash chains, elliptic
curves. The following is a detailed introduction of these two
technologies.

1) Hash Chain: The hash chain mainly uses the proper-
ties of the hash function. The specific operation is that the
user chooses an initial data, then hashes the initial data sev-
eral times, and finally connects the results obtained by each
hash into a sequence, which is a hash chain. The hash chain’s
security relies on the hash function’s one-way property.

A secure hash function h(·) should satisfy the following
properties:

• h(·) inputs a message of arbitrary length, but outputs a
fixed-length message.

Fig. 2. Hash chain.

• Given x as an input message to the h(·), it can obtain y
easily, where y = h(x). However, it is difficult to obtain
x if given y.

• If x ′ �= x , then h(x ′) �= h(x).
As is shown in Fig. 2, it is a hash chain of length i. And the

seed is an initial seed value, which can be used to compute
Si = hi (seed). It’s worth noting that, if given Si , it is easy
to obtain Si+1 = h(Si). However, it is very hard to obtain
Si−1 = h−1(Si).

In the proposed scheme, we use the properties of the hash
chain to design a lightweight signature algorithm for edge
servers to sign notification messages.

2) Elliptic Curve Cryptography: The elliptic curve cryp-
tography (ECC) system is briefly summarized as follows:

Given a finite field Fq and a large prime number q greater
than 3. And let an elliptic curve point E over Fq , which is
expressed as y2 = x3+ax+b (mod q). Here, a, b, x , y ∈ Fq ,
and it should satisfy 4a3 + 27b2 (mod q) �= 0. Let O as a
point at infinity, Gq as a cyclic group with the order q and
P as a generator. The group Gq needs to have the following
three properties:

• Additive: Suppose there are two points P and Q on the
cyclic group Gq , and if these two points are not equal,
R is obtained by computing P + Q. Here, R is the
intersection of the line connecting P and Q with the
elliptic curve. Also, if P = − Q, then P + Q = 0 is
obtained.

• Scalar point multiplication: Suppose P ∈ Gq and
n ∈ Z ∗

q , then we can get n · P = P + P + · · ·+ P .
• Elliptic curve discrete logarithm problem (ECDLP): ECC

security is primarily based on ECDLP, which is said that
given s and P, where the s ∈ Zq and P ∈ Gq , it is
easy to compute Ppub = s · P , where the Ppub ∈ Gq .
However, given P and Ppub , it is hard to computer s.

In the proposed scheme, we use ECC to design a lightweight
batch authentication algorithm to reduce the time overhead
associated with the signature of smart devices.

B. System Model and Assumptions

As shown in Fig. 3, there are three entities in the IIoT
system model: the key distribution center, the edge server, and
some smart devices. Each type of entity and its assumptions
are described in detail below.

1) Key Distribution Center (KDC): The KDC is a clus-
ter of servers in the IIoT system. It assumes that
the KDC is a fully trusted entity with strong storage
and computational capabilities. The KDC can generate
system parameters and is responsible for the distri-
bution of keys between the edge server and smart
devices. The KDC also can generate a seed and the
corresponding parameters of the seed for the edge
server to sign the notification messages. Finally, the
KDC sends the system’s public parameters to the IIoT

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

360 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

Fig. 3. System model.

system and some secret parameters to its corresponding
entities through a secure channel. Note that KDC is the
only entity that can trace the real identity of a smart
device.

2) Edge Server (ES): The ES is a cluster of servers in the
IIoT system. It is a server that belongs to an organi-
zation (e.g., a smart factory), responsible for assisting
in the authentication of smart devices. The ES has
good computational and storage capabilities. Note that
the ES can communicate over a wider range than
each smart device can communicate with each oth-
ers. Therefore, if the ES can receive data sent from a
smart device (data sender), all other smart devices (data
receivers) that can receive data sent from that smart
device (data sender) can also receive data sent from
the ES.

3) Smart Device (SD): Smart devices are distributed in
the IIoT system and have many interests. These smart
devices usually have the poor computing power and lim-
ited storage capacity. They can generate shared data
(e.g., production status) and dynamically adjust produc-
tion methods by using data sent by other devices with
the same interest. It is worth noting that to protect the
IIoT system’s privacy, smart devices in the IIoT should
be anonymous [34].

C. Threat Model

The main adversaries considered in our proposed scheme
are external network attackers and are not directly involved
with the entities in the IIoT system. This type of adver-
sary can launch both passive and active attacks. Specifically,
when an adversary launches a passive attack, it mainly listens
to the communication channels between entities in the IIoT
system and tries to obtain confidential information (e.g., pro-
duction decisions) about the IIoT system. When an adversary
launches an active attack, he mainly accesses the communi-
cation channel between entities in the IIoT system and then
intercepts, modifies, and replays the transmitted data through
that channel.

TABLE I
NOTATIONS

D. Design Objectives

In this section, we present the functional objectives and
security objectives that can be met in the proposed scheme.

1) Functional Objectives:
• Batch authentication: In the proposed scheme, batch

authentication is supported, which means that ES can
simultaneously verify the legitimacy of a huge amount
of data from different smart devices.

2) Security Objectives:
• Integrity: The verifier can confirm that the received data

has not been tampered with by network attackers.
• Confidentiality: Even if a network attacker intercepts data

via Internet, it cannot obtain the plaintext of the data.
• Anonymity: The real identity of the smart device is pro-

tected; no network attacker except for the KDC can obtain
the real identity of the smart device through the messages
sent by the device.

• Unlinkability: A network attacker cannot discover the
correlation between two pseudonyms generated by the
same smart device or between signatures generated by
different pseudonyms of the same device.

• Replay attack resistance: Since the data in this scheme
satisfies integrity, the timestamp in the data cannot be
modified by a network attacker. Therefore, the verifier
can verify the freshness of the data by the timestamp.

IV. PROPOSED SCHEME

This section describes the proposed scheme in the following
phases: system parameter generation, pseudonym and secret
key generation for SD, message encrypting and signing, batch
authentication, generating notification messages, and message
recovery. The notations used in this scheme are shown in
Table I.

A. System Parameter Generation

In our scheme, to implement the functions of encryption,
decryption, signing, and verification of messages, KDC needs
to generate some system parameters.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BATCH AUTHENTICATION SCHEME BASED ON EDGE COMPUTING IN IIoT 361

1) The KDC chooses the parameters (G, q, P) of elliptic
curve as the basis for generating system parameters.

2) The KDC selects five one-way hash functions: h1 : G →
{0, 1}∗, h2 : {0, 1}∗×G → Z ∗

q , h3 : {0, 1}∗×G×G×
{0, 1}∗ × {0, 1}∗ → Z ∗

q , h4 : G ×G × Z ∗
q × {0, 1}∗ ×

{0, 1}∗ × {0, 1}∗ → Z ∗
q , h5 : {0, 1}∗ → Z ∗

q .
3) Once a new SD wants to join the IIoT system, the KDC

needs to assign a real identity to the SD, which be
represented as RIDi ∈ {0, 1}∗.

4) In the proposed scheme, we need to guarantee the
confidentiality of data during transmission while also
ensuring that other legitimate data receivers can decrypt
the corresponding ciphertext. Therefore, the KDC needs
to generate a group secret key gsk ∈ Z ∗

q .
5) To ensure the security of the IIoT system, the SD

needs to verify the validity of the messages it receives.
However, the computing power of SD is limited and
the messages received are massive. In the proposed
scheme, we let ES with stronger computing power verify
the message and then broadcast the result (notification
message) to the IIoT system. To ensure the integrity
of the notification message, the ES needs to generate
some verification keys VKS for signing. In the proposed
scheme, KDC generates a seed seed, which ES can use
to generate verification keys. Assume that ES requires
k verification keys and the x-th VK be represented as
VKx = hx4 (seed).

6) The KDC sets the system parameters params =
{G , q ,Z ∗

q ,Ppub , h1, h2, h3, h4, h5}, then broadcasts
them to IIoT system. Finally, the KDC sends seed to
the ES via a secure channel and sends RID, gsk, and
VKk to the corresponding SD via a secure channel.

B. Pseudonym and Secret Key Generation for SD

In the proposed scheme, to ensure the anonymity of data,
SD needs to use pseudonyms. To prevent pseudonyms from
being forged, the pseudonyms are generated by KDC in the
following steps.

1) To achieve data unlinkability, KDC needs to generate a
series of pseudonyms. First, KDC randomly chooses a
number ui ,j ∈ Zq

∗ and then computes Ui ,j = ui ,j · P .
Finally, the KDC computes the j-th pseudonym

PIDi ,j = RIDi ⊕ h1
(
s ·Ui ,j

)
. (1)

2) To ensure that SD pseudonyms cannot be used arbitrarily
in other smart device signatures, KDC needs to gener-
ate a corresponding unique key for each pseudonym to
be used in future SD signatures. Therefore, the KDC
computes the secret key

ski ,j = s + ui ,j . (2)

3) The KDC sends {PIDi ,j , ski ,j , hi ,j ,Ui ,j } to smart
device SDi via a secure channel, where hi ,j =
h2(PIDi ,j ,Ui ,j).

C. Message Encrypting and Signing

When SDi needs to send its real-time data, it needs to
encrypt the data and sign the corresponding ciphertext to

protect data privacy in the IIoT system. Subsequently, SDi

sends the signed data to ES. Note that to ensure the confiden-
tiality of data, we apply symmetric encryption to our scheme.
Also, to enhance the security of the data, we use random num-
bers to generate the encryption key eki ,j , which can achieve
the effect of one secret at a time.

1) First, to generate the i-th SD’s j-th secret key eki ,j ,
the SDi randomly chooses a number ri ,j ∈ Zq

∗. Then
the SDi computes Ri ,j = ri ,j · P . Finally, the SDi

sets the data encryption key as

eki ,j = h1
(
ri ,j · gsk · P)

. (3)

It is worth noting that no real-time messages are required
to generate these parameters, so the SD can generate
these parameters ahead of time and store them for future
encrypting or signing messages. In the proposed scheme,
when SDi network density is not high, it is possible to
perform precalculations to compute Ri ,j and then store
them. These parameters are required for encrypting and
signing messages.

2) Since IIoT requires high real-time data and SDi is a
device with limited computational power, the encryp-
tion algorithm should be lightweight. In the proposed
scheme, we use symmetric encryption to encrypt the
real-time data mi . And the ciphertext Mi be computed
by SDi as

Mi = Eeki,j (mi). (4)

3) To ensure the integrity and verifiability of the
final message sent by SDi , the SDi first gener-
ates a timestamp Ti and then computes h∗i ,j =
h3(PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti).

4) The SDi sets the signature as

δi ,j = ski ,j · h∗i ,j + ri ,j · hi ,j . (5)

And then the SDi sends {σi ,j ,Mi ,Ti ,PIDi ,j } to IIoT
environment, where σi ,j = (Ri ,j ,Ui ,j , δi ,j).

D. Batch Authentication

When ES receives some data sent by SD, it needs to verify
the received data and then broadcast the verification result
into the IIoT system. Noting that the data that ES receives are
massive. To reduce the computing cost of verifying these data,
in our scheme, ES can validate a batch of data simultaneously.
Assume that after initial data filtering, there are still n pieces
of data that need to be verified by ES.

1) When ES receives data, it first checks the timestamp Ti

to determine whether the data is expired. If the Ti is
not fresh, ES rejects the data.

2) The ES computes hi ,j = h2(PIDi ,j ,Ui ,j), h∗i ,j =
h3(PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti).

3) To effectively prevent non-repudiation attacks, ES
applies the small exponential test technique to the pro-
cess of batch authentication. ES randomly selects a
vector x = {x1, x2, x3, . . . , xn}, where xi ∈ [1, 2l] and l
is a small integer that requires little computational cost.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

362 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

4) The ES determines whether the Eq. (6) holds by
computation. If this equation holds, which means the
n different data are legal. Then the ES performs the
subsequent storage and broadcast operations.

(
n∑

i=1

(xiδi,j)

)
P =

(
n∑

i=1

(
xih

∗
i,j

))
Ppub +

n∑
i=1

(
xih

∗
i,jUi,j

)

+

n∑
i=1

(xihi,jRi,j). (6)

The correctness of the Eq. (6) is as follows:
(

n∑
i=1

(
xiδi,j

)) · P =

(
n∑

i=1

(
xi ·

(
ski,j · h∗

i,j + ri,j · hi,j
))) · P

=

n∑
i=1

(
xi ·

(
(s + ui,j) · h∗

i,j + ri,j · hi,j
)) · P

=

n∑
i=1

(
xi ·

(
h
∗
i,j · (Ppub + Ui,j) + hi,j · Ri,j

))

=

(
n∑

i=1

(
xih

∗
i,j

))
Ppub

+

n∑
i=1

(
xih

∗
i,j Ui,j

)
+

n∑
i=1

(
xihi,j Ri,j

)
.

5) If the Eq. (6) does not hold, it proves that there are some
invalid data in this batch of data. For a batch of data, it
may only a few invalid data exist. Suppose ES chooses
to abandon the whole batch of data because of this small
amount of invalid data. In that case, this will lead to the
waste of valid data and the transmission delay caused
by legitimate SD sending valid data again. Therefore, to
improve the efficiency of batch authentication, we apply
the binary search technique to this scheme and use it to
find invalid data to distinguish invalid data from valid
data.
Suppose that after filtering through the timestamp Ti

by ES, there are still n data that need batch authentica-
tion. First, ES arranges the received data into a list as
List = {data1, data2, data3, . . . , datan} according to
the order of the timestamps. Then the ES sets two empty
lists as List1 and List2, which will be used to generate
notification messages. To reduce the data length of an
ES release notification message, the List1 will store the
hash value of invalid data, and the List2 will store the
hash value of valid data.
The specific steps of extracting valid and invalid data are
shown in Algorithm 1. And the batchAuthenticate(List,
low, high) denotes batch authentication of received data
by ES.

E. Generating Notification Messages

In an IIoT environment, an SD needs to receive data from
other SD to adjust its production state dynamically. However,
SD has limited computing power in the face of numerous
data. If the data is already verified by ES and needs to be
re-verified by SD, this will cause a lot of additional com-
putational overhead. Therefore, after ES validates the data in
the IIoT environment, it is necessary to generate notification

Algorithm 1 dataExtract(List ,List1,List2, low , high)

1: if batchAuthenticate(List, low, high) == true then
2: for i = low; i < high; i ++ do
3: List2.append(h4(List [i]))

return List .remove(List [i])
4: end for
5: else
6: if low == high then
7: List1.append(h4(List [low]))

return List .remove(List [low])
8: else
9: mid = (low + high)/2

dataExtract(List ,List1,List2, low ,mid)
dataExtract(List ,List1,List2,mid , high)

10: end if
11: end if

messages about valid and invalid data to assist SD in data val-
idation. In our proposed scheme, the ES generates notification
messages through the following steps:

1) SD needs to verify the validity of the notification mes-
sage, so ES needs to sign the notification message before
broadcasting it. In the proposed scheme, we design a
lightweight signature algorithm based on a hash chain to
reduce the computational overhead caused by ES’s sig-
nature on notification messages. In the system parameter
generation phase, ES gets seed distributed by KDC, and
SD gets VKk distributed by KDC.

2) Let the FinList denote the union of List1 and List2.
Before sending a notification message to the IIoT
system, ES should sign FinList in the following way:

NMSign = (VKk−1 ⊕VKk)

||(h5(FinList ||VKk−1||VKk ||TNM))||FinList ||TNM , (7)

where TNM denotes the notification message generation
time. Subsequently, the ES broadcasts NMSign to the
IIoT system.

Remark: The ES signature key is composed of a hash
chain. When ES is signing, the signing keys are used in the
order from the back to the front of the hash chain, and the
previously used signing keys are discarded. SD has VKk , but
it is impossible to get VKk−1 unless it gets ES’s latest signa-
ture. When SD gets ES’s signature, ES chooses VKk−2 as the
next signature key, so the hash chain-based signing algorithm
is secure.

F. Message Recovery

In the proposed scheme, if the ES has verified the validity of
the message sent by SDi , then when SDj receives a message
sent by SDi according to its interest, it only needs to spend
little time to perform a simple query in the valid NMSign to
determine the validity of the message from SDi . Assume that
the k-th VK saved in SDj is VK ′

k .
1) When the SDj receives NMSign, it first checks

the timestamp TNM to determine whether the
NMSign is expired, if the TNM is not fresh,
ES rejects the NMSign. Otherwise, SDj calculates
VK ′

k−1 = (VKk−1 ⊕ VKk)⊕ VK ′
k .

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BATCH AUTHENTICATION SCHEME BASED ON EDGE COMPUTING IN IIoT 363

TABLE II
FOUR POSSIBLE CASES OF QUERY RESULTS

2) SDj determines if h5(FinList ||VKk−1||VKk ||TNM) =
h5(FinList ||VK ′

k−1||VK ′
k ||T ′

NM) is true. If that is true,
then NMSign is proved to be valid.

3) SDj computes the value of h4(σi ,j ,Mi ,Ti ,PIDi ,j).
4) SDj queries the value of h4(σi ,j ,Mi ,Ti ,PIDi ,j) in the

FinList to determine whether the message from SDi is
valid.
After the SDj query list FinList, the query results may
appear in four different cases, which are shown in the
Table II. For the first case, SDi ’s message can be con-
firmed to be valid. For the second case, SDi ’s message
can be confirmed to be invalid. For the third case, the
hash value of the message sent by SDi appears not
only in List2, but also in List1. It means a false pos-
itive happens, so the ES needs to confirm the SDi ’s
message again. For the last case, it means the ES has
not yet validated the message from SDi , so the SDj

should wait for the next NMSign be broadcast from
the ES.

5) If the received message of SDi is valid, the receiver SDj

computes ek ′i ,j = h1(gsk · Ri ,j) and mi = Dek ′
i,j
(Mi)

to obtain the plaintext mi .

V. SECURITY PROOF AND ANALYSIS

In this section, we show the security satisfied by the
proposed scheme in terms of security proof and analysis. Note
that in our proposed scheme, symmetric encryption is mainly
implemented using Advanced Encryption Standard (AES),
so only the unforgeability of the signature is proven in the
security proof.

A. Security Proof

We prove the security of the proposed scheme in the random
oracle model. The simulator B and the adversary A define the
security model by playing a game. In the game, the adversary
A could make some queries by the follows:

• Setup phase: First, the simulator B generates a set of
public system parameters and secret keys, and then sends
the system public parameters to the adversary A.

• h1 Oracle: The simulator B selects a random number
τ ∈ {0, 1}∗, and stores (m, τ) in the list Lh1 . Then, the
simulator B sends τ to the adversary A.

• h2 Oracle: The simulator B selects a random number
τ ∈ Z ∗

q , and stores (m, τ) in the list Lh2 . Then, the
simulator B sends τ to the adversary A. Note that query
process for h3 Oracle is similar to h2 Oracle.

• Sign Oracle: If the simulator B gets a message mi

from adversary A, the simulator B generates a data

{Ri ,j ,Ui ,j , δi ,j ,Mi ,Ti ,PIDi ,j }, and then, the simulator
B sends it to the adversary A.

An adversary A can break the proposed scheme Γ if the
A generates a valid signed message. Let AdvAuth

Γ (A) present
the probability of A breaking the proposed scheme.

Definition 1: The proposed scheme Γ for IIoT is secure if
AdvAuth

Γ (A) is negligible for any polynomial A.
We evaluate the security of the proposed scheme and

prove that this scheme is secure under the random oracle
model.

Theorem 1: Suppose Q denotes the number of queries to the
random oracle by the adversary A, and R denotes the num-
ber of queries to the sign oracle by the adversary A. If the
adversary A can break the scheme within a time period T, the
simulator B can break ECDLP within a time period T ′, where
the T ′ < 120686QT/ε and ε ≥ 10(R + 1)(R +Q)/q .

Proof: Supposed that an adversary A has the ability
to forge a message {Ri ,j ,Ui ,j , δi ,j ,Mi ,Ti ,PIDi ,j }. We
can construct a simulator B has the capability to solve
the ECDLP with a non-negligible probability by utilizing
the adversary A as a subroutine. Noting that the simu-
lator B maintains Lh1 , Lh2 and Lh3 . Given an ECDLP
instance {P ,PKi ,j = ski ,j · P |ski ,j ∈ Z ∗

q }, B simulates ora-
cles queried by A as follows.

Setup: The simulator B sends the system parameters
params = {G , q ,Z ∗

q ,Ppub , h1, h2, h3} to the adversary A.
h1 Oracle: When the adversaryAmakes a h1 query with mes-

sage μ, the simulator B determines whether a tuple < μ, τh1 >
exists in list Lh1 . If so, the simulator B sends τh1 = h1(μ) to
the adversary A; otherwise, the simulator B chooses a random
bit-string τh1 ∈ {0, 1}∗, next, it inserts < μ, τh1 > into Lh1
and sends τh1 = h1(μ) to the adversary A.

h2 Oracle: Once the adversary A makes a h2 query with
the message < PIDi ,j ,Ui ,j >, the simulator B determines
whether a tuple < PIDi ,j ,Ui ,j , τh2 > exists in list Lh2 . If so,
the simulator B sends τh2 = h2(PIDi ,j ,Ui ,j) to the adver-
sary A. Otherwise, the simulator B chooses a random number
τh2 ∈ Z ∗

q , next, it inserts < PIDi ,j ,Ui ,j , τh2 > into list Lh2
and sends τh2 = h2(PIDi ,j ,Ui ,j) to the adversary A.

h3 Oracle: Once the adversary A makes a h3 query with the
message <PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti>, the simulator B deter-
mines whether a tuple < PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti , τh3 >
exists in list Lh3 . If so, the simulator B sends τh3 =
h3(PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti) to the adversary A. Otherwise,
the simulator B chooses a random number τh3 ∈ Z ∗

q , inserts
< PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti , τh3 > into list Lh3 and sends
τh3 = h3(PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti) to the adversary A.

Sign query: When the adversary A uses PIDi ,j for a sign
query on a message Mi , the simulator B queries hi ,j =
h2(PIDi ,j ,Ui ,j), h∗i ,j = h3(PIDi ,j ,Ri ,j ,Ui ,j ,Mi ,Ti)
through lists Lh2 and Lh3 respectively. Then, the simulator
B selects a random numbers δi ,j ∈ Z ∗

q . Next, the B computes
Ri ,j = (δi ,j · P − h∗i ,j · PKi ,j) · h−1

i ,j . Last, the simulator B
sends < Mi ,Ri ,j , δi ,j > to the adversary A.

Analysis: Through forking lemma [35], the adversary A can
construct two valid signatures (Ri ,j , δi ,j = hi ,j · ri ,j + h∗i ,j ·
ski ,j), (Ri ,j , δ

′
i ,j = hi ,j · ri ,j + h∗′i ,j · ski ,j), and the simulator

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

B can get ski ,j by computing

δi,j − δ′i,j
h∗
i,j − h∗′

i,j

(mod q)

=

(
hi,j · ri,j + h∗

i,j · ski,j − hi,j · ri,j − h∗′
i,j · ski,j

h∗
i,j − h∗′

i,j

)
(mod q)

= ski,j (8)

In summary, the simulator B can break the ECDLP within
the time T ′, where T ′ < 120686QT/ε, where ε ≥ 10(R +
1)(R + Q)/q . Therefore, the scheme is secure under the
random oracle model.

B. Security Analysis

Combining the threat model and security analysis, we
demonstrate the security properties met by the scheme. It is
worth noting that in the proposed scheme, we design two
signature algorithms, and these two signature algorithms are
executed by SD and ES, respectively. Moreover, according to
the threat model, we can know that the malicious network
attacker can intercept and tamper with data.

1) Integrity: For a smart device SDi , according to
Theorem 1, we can know that SDi ’s signature cannot be
forged because solving the ECDLP is hard. Therefore, if
a network attacker launches an active attack, tempered
with the data {σi ,j ,Mi ,Ti ,PIDi ,j } and then broad-
casts the tampered data to the IIoT system, the ES can
use Eq. 6 and binary search to quickly find this illegal
data, so the scheme can guarantee the integrity of SDi ’s
signature.
For ES, it sends notification mes-
sages signature NMSign = (VKk−1 ⊕
VKk)||(h4(FinList ||VKk−1||VKk ||TNM))||FinList ||
TNM to the IIoT system. If a network attacker
launches an active attack, tampered with the
NMSign and broadcasts the tampered NMSign
to the IIoT system, the receiver SDj can calcu-
late VK ′

k−1 = (VKk−1 ⊕ VKk) ⊕ VK ′
K , and

find out that h4(FinList ||VKk−1||VKk ||TNM) =
h4(FinList ||VK ′

k−1||VK ′
k ||T ′

NM) is false in time.
Therefore, the proposed scheme can guarantee the
integrity of ES’s signature.

2) Confidentiality: For a smart device SDi , in the proposed
scheme, before SDi sends a message, SDi first encrypts
the plaintext by symmetric encryption, then signs the
ciphertext, and finally broadcasts the processed message.
For ES, to process messages from SDi and broadcast
them to the IIoT system, SDi ’s original data mi always
exists in ciphertext form.
To sum up, from SDi sending a message to SDj receiv-
ing the corresponding message, the mi in the whole
process is always in the form of ciphertext. When a
network attacker launches a passive attack or an active
attack to obtain the message sent by SDi , it cannot
get the corresponding plaintext mi because it does not
have the encryption key eki ,j . Therefore, the proposed
scheme can guarantee the confidentiality of data mi .

3) Anonymity: The anonymity implies that the signature
of the SDi is anonymous. Since there is only one ES
in the system model, the signature of the ES does not
need to be anonymous. In the proposed scheme, before
SDi broadcasts a message, it hides its real identity in
a pseudonym. When a network attacker launches a pas-
sive attack or an active attack to obtain a message, it
cannot get the real identity RIDi of the smart device
SDi unless it has a number ui ,j and the system master
key s. However, in our proposed scheme, ui ,j and s are
all stored in KDC, so it is not accessible to a network
attacker. Therefore, the proposed scheme can ensure the
anonymity of SDi .

4) Unlinkability: The unlinkability implies that the signa-
ture of the SDi is unlinkable. Since there is only one
ES in the system model, the signature of the ES does
not need to be unlinkable. In our proposed scheme,
the pseudonym is obtained by calculating PIDi ,j =
RIDi⊕h1(s ·ui ,j ·P) , which contains a random number
ui ,j , and this number uniquely corresponds to a secret
key ski ,j and a pseudonym PIDi ,j . In other words, each
signature from SDi corresponds to a random number
and a pseudonym. There is no connection between these
random numbers, and there is no connection between
these pseudonyms. Therefore, when a network attacker
launches a passive or active attack to obtain two mes-
sages generated by two different pseudonyms, it cannot
link the two messages.

5) Replay attack resistance: When a network attacker
launches an active attack and replays the message, the
ES can verify the timestamp and find that the message
is not within the validity period, then the ES will reject
the message. Similarly, the ES signature for notification
messages has the corresponding timestamp. Therefore,
the proposed scheme is resistant to replay attacks.

VI. PERFORMANCE ANALYSIS

In this section, we use the experiment to prove the feasibility
and superiority of our proposed scheme.

A. Experiment Setup

1) Experimental Environment: We use c++ code to imple-
ment the proposed scheme. The cryptographic library we use is
Miracl Core [36], and we choose the BLS12381 curve (which
provides 128-bit security level) to implement the basic opera-
tions of elliptic curves. In addition, the symmetric encryption
we use is AES, and we use hashmap to implement FinList.
As shown in Fig. 4, we use a PC to simulate the edge
server in the proposed scheme. The operating system on this
PC is Ubuntu 18.04.3 with an Intel Core i5-7500 CPU at
3.40GHz and 16GB of memory. In the proposed scheme,
smart devices have limited computing power, so we use a
Raspberry Pi 4 to simulate a smart device. The Raspberry
Pi has a 1.5GHz CPU and 4GB memory. Here, the edge
server and Raspberry Pi are connected to the same router via
a wired network for data transmission stability. The router
is a Gigabit router. It is worth noting that the PC does the

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BATCH AUTHENTICATION SCHEME BASED ON EDGE COMPUTING IN IIoT 365

TABLE III
FOUR CASES IN IIOT

Fig. 4. Experimental network topology.

batch authentication of messages and the generation of noti-
fication messages in our experiments. Other operations, such
as encryption, decryption, and signing of the initial messages,
are done by the Raspberry Pi 4. The router does not partici-
pate in any computation and only provides the network to all
devices.

2) Cases in IIoT: In the IIoT system, it is generally the
case that smart devices communicate directly with each other
and authenticate the received messages one by one. To prove
that (1) batch authentication algorithm can improve the effi-
ciency of message authentication; (2) using edge servers to
assist smart devices in message authentication can significantly
improve the efficiency of smart device message authentica-
tion; (3) hash chain-based signature algorithm is lightweight,
we set four cases. As shown in Table III, case1 is a typ-
ical case in the IIoT system, where SDj authenticates the
received data one by one. To highlight the efficiency of batch
authentication, in case2, SDj performs batch authentication for
the received messages. Furthermore, to demonstrate that the
efficiency of message authentication can be improved with
the assistance of ES, case3 lets ES perform batch authenti-
cation and sign the authentication results using the elliptic
curve digital signature algorithm (ECDSA). Finally, to prove
that the proposed hash chain-based signature (labeled as
HashSig) is lightweight, we set case4. The only difference
between case4 and case3 is using HashSig instead of ECDSA.
Note that our proposed scheme is case4 (labeled as Ours).
In addition, to further show that the proposed scheme is
lightweight, we compare the proposed scheme with related
schemes [19], [30].

Fig. 5. Comparison of the total time overhead when the number of
messages is 1.

B. Experimental Results

1) Advantages of Batch Authentication Scheme Based on
Edge Computing: We conduct experiments on case1, case2,
case3, and Ours, according to the experimental setup, and the
results are as follows.

• For SDi , it first generates some parameters related to
encryption and signature, then encrypts and signs the
generated original data. After testing, we obtain that
SDi spend total time in case1 is 2.623 ms, in case2 is
2.505 ms, in case3 is 2.509 ms and in Ours is 2.507 ms.
The difference in the time cost by SDi is negligible
because the SDi ’s operation is the same.

• The ES performs batch authentication of the received
data and signs the authentication result. According to the
experimental setup, only case3 and Ours use ES. When
the number of authenticated data is 1, the total time of ES
consumed in case3 is 2.292 ms and in Ours is 1.159 ms.

• In case1 and case2, SDj authenticates the received mes-
sages and then decrypts them to obtain the original data.
In case3 and Ours, SDj performs authentication of the
received message with the assistance of the authentica-
tion result signed by ES and performs decryption to get
the original data. When the number of data is 1, the total
time consumed by SDj is 5.681 ms in case1, 5.557 ms
in case2, 2.826 ms in case3, and 1.250 ms in Ours.

When the number of messages is 1, the total time spent in
case1 is about 2.623 + 5.681 = 8.304 ms. We calculate the
total time for other cases using the same way and represent it
in Table IV, Fig. 5, and Fig. 6.

From Fig. 6, we find that as the number of messages
continues to increase, the total time required for case1 and
case2 to process data also increases, and the difference in
time cost between the two cases gets larger. When the num-
ber of messages reaches 180, the time cost in case2 is

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

TABLE IV
THE TOTAL TIME COST IN FIVE CASES (MS)

Fig. 6. Comparison of the total time overhead.

about 363.766 ms less than that in case1, reflecting batch
authentication’s superiority.

As shown in Table IV, we find that when the number of
messages is 20, the time cost in case3 is 30.346 ms less
than that in case2. And from Fig. 6, we find that the dif-
ference in total time overhead between case2 and case3 is
getting more significant as the number of messages increases.
Therefore, using ES to assist SDj with message authentication
can effectively reduce the total time overhead. In addition, by
combining Table IV and Fig. 6, we can see that the total time
overhead in case3 and Ours is always about the same because
the difference between these two cases is that ES uses differ-
ent signatures, and ECDSA and HashSig are both lightweight
signatures.

In Fig. 5, We find that the total computational overhead
of Ours is the lowest when the number of messages is 1,
which is about 4.42% of [19] and 79.06% of [30]. The rea-
son is that in [19], smart devices with limited computational
power need to perform many time-consuming bilinear pairing
operations. And in [30], although the authentication algorithm
is lightweight, using edge servers to assist smart devices in
authentication is not considered. From Fig. 6, we can see
that the computational overheads of [19] and [30] are con-
sistently higher than those of Ours. Therefore, compared with
schemes [19] and [30], our proposed lightweight edge-assisted
batch authentication scheme is more suitable for IIoT systems.

2) Advantages of HashSig: In the proposed scheme, to
prove that the HashSig algorithm is lightweight, we compare
the HashSig algorithm with the lightweight ECDSA. HashSig
signature and verification time will be tested on the ES side
and compared with ECDSA signature and verification time.
The results are shown in Fig. 7 and Fig. 8. From Fig. 7 and
Fig. 8, we find that the time consumed by HashSig is very

Fig. 7. Comparison of signing time between HashSig and ECDSA.

Fig. 8. Comparison of verification time between HashSig and ECDSA.

close to the time consumed by ECDSA. Although the HashSig
verification time exceeds the ECDSA verification time as the
length of the message increases to 2048 KB, its verification
time is still short. Combining Table IV, Fig. 5 and Fig. 6, we
can see that the total time consumed by Ours is very close to
the total time consumed by case3, and the time cost of HashSig
is negligible as a percentage of the total time. Therefore, our
proposed HashSig is a lightweight signature algorithm that
can be applied to IIoT environments with high data real-time
requirements.

C. Communication Overhead

In the cryptographic library, the elements in G are 97 bytes,
and the theoretical size of large integers is 48 bytes. We set the
size of the plaintext message to be 56 bytes and the timestamp
to be 16 bytes.

In case1, case2, case3, and Ours, the signatures used
by SDi are the same, so the data sent by SDi are
{σi ,j ,Mi ,Ti ,PIDi ,j }, and the length of the data they send is
also the same, about 97 + 97 + 48 + 64 + 16 + 56 = 378

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: EFFICIENT BATCH AUTHENTICATION SCHEME BASED ON EDGE COMPUTING IN IIoT 367

bytes. For case3 and Ours, the length of the data sent by
ES depends on the signature algorithm they use and the
number of batch authentication messages. For example,
the number of messages is n. If the ECDSA signature
algorithm is used, the length of the final data sent is
96 + 49*n bytes, where 96 bytes is the size of the param-
eters needed to verify ECDSA and 49 bytes is the size
of each message after processing. If the signature algo-
rithm used is HashSig, the final data sent is (VKk−1 ⊕
VKk)||(h5(FinList ||VKk−1||VKk ||TNM))||FinList ||TNM ,
length is 56 + 48 + 16 + 49*n = 120 + 49*n bytes.
Although the data finally transmitted using HashSig signature
is longer than that using ECDSA signature, the difference
is only 24 bytes with the same number of messages, which
does not produce significant transmission delay and is still
suitable for IIoT environments.

We use the same method to calculate the communication
overhead for [19] and [30]. In [19], the length of the data sent
by SDi is about 395 bytes, which is 17 bytes longer than Ours.
In [30], the length of the data sent by SDi is about 752 bytes,
which is 374 bytes longer than Ours. In addition, the length
of the data sent by ES in [30] is about 732*n bytes, which
is 683*n − 120 bytes longer than Ours. Note that in [19],
the data sender and receiver communicate directly with each
other, so the length of the data sent by ES is 0 bytes. However,
the total computational overhead in our proposed scheme is
less than that in [19].

VII. CONCLUSION

This paper proposes an efficient edge computing-based
batch authentication scheme to protect privacy-sensitive data
in IIoT environments. First, we design an ECC-based batch
authentication algorithm to improve the efficiency of verifying
messages sent from SD. Second, we use edge servers to reduce
the authentication overhead of smart devices. Third, we design
a lightweight signature based on a hash chain to improve the
efficiency of ES in signing notification messages and the effi-
ciency of SD in verifying notification messages. The security
proof and analysis demonstrate that the scheme provides high
security and can meet the security requirements of the IIoT
system. Experimental results and performance analysis show
that the scheme has a lower computing cost, further proving
the scheme’s feasibility in the IIoT environment. However,
the proposed scheme is more suitable for a single adminis-
trative domain and does not consider authentication between
devices in cross-domain IIoT. Therefore, in our future work,
we will introduce blockchain technology to design a practical
and lightweight authentication scheme for cross-domain IIoT
environments.

ACKNOWLEDGMENT

The authors are very grateful to the anonymous referees for
their detailed comments and suggestions regarding this paper.

REFERENCES

[1] M. M. Dhanvijay and S. C. Patil, “Internet of Things: A survey
of enabling technologies in healthcare and its applications,” Comput.
Netw., vol. 153, pp. 113–131, Apr. 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128619302695

[2] R. Ande, B. Adebisi, M. Hammoudeh, and J. Saleem, “Internet of
Things: Evolution and technologies from a security perspective,” Sustain.
Cities Soc., vol. 54, Mar. 2020, Art. no. 101728. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210670719303725

[3] S. Nižetić, P. Šolić, D. L.-D.-I. González-de-Artaza, and L. Patrono,
“Internet of Things (IoT): Opportunities, issues and challenges towards
a smart and sustainable future,” J. Clean. Prod., vol. 274, Nov. 2020,
Art. no. 122877. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S095965262032922X

[4] D. S. Gupta, S. H. Islam, M. S. Obaidat, P. Vijayakumar, N. Kumar,
and Y. Park, “A provably secure and lightweight identity-based two-party
authenticated key agreement protocol for IIoT environments,” IEEE Syst.
J., vol. 15, no. 2, pp. 1732–1741, Jun. 2021.

[5] A. K. Sahu, A. K. Sahu, and N. K. Sahu, “A review on the research
growth of industry 4.0: IIoT business architectures benchmarking,” Int.
J. Bus. Anal., vol. 7, no. 1, pp. 77–97, 2020.

[6] J. Singh, A. Gimekar, and S. Venkatesan, “An efficient lightweight
authentication scheme for human-centered industrial Internet of Things,”
Int. J. Commun. Syst., to be published.

[7] M. Ghobakhloo, “Industry 4.0, digitization, and opportunities for sus-
tainability,” J. Clean. Prod., vol. 252, Apr. 2020, Art. no. 119869.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0959652619347390

[8] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial Internet of Things: Architecture, advances
and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2462–2488, 4th Quart., 2020.

[9] A. Sari, A. Lekidis, and I. Butun, “Industrial networks and IIoT: Now
and future trends,” in Industrial IoT. Cham, Switzerland: Springer, 2020,
pp. 3–55.

[10] P. K. Illa and N. Padhi, “Practical guide to smart factory transition using
IoT, big data and edge analytics,” IEEE Access, vol. 6, pp. 55162–55170,
2018.

[11] M. Humayun, N. Jhanjhi, B. Hamid, and G. Ahmed, “Emerging smart
logistics and transportation using IoT and blockchain,” IEEE Internet
Things Mag., vol. 3, no. 2, pp. 58–62, Jun. 2020.

[12] C. Perera, M. Barhamgi, A. K. Bandara, M. Ajmal, B. Price, and
B. Nuseibeh, “Designing privacy-aware Internet of Things applica-
tions,” Inf. Sci., vol. 512, pp. 238–257, Feb. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519309120

[13] M. A. Azad, S. Bag, F. Hao, and A. Shalaginov, “Decentralized self-
enforcing trust management system for social Internet of Things,” IEEE
Internet Things J., vol. 7, no. 4, pp. 2690–2703, Apr. 2020.

[14] J. W. Guck, A. Van Bemten, and W. Kellerer, “DetServ: Network models
for real-time QoS provisioning in SDN-based industrial environments,”
IEEE Trans. Netw. Service Manag., vol. 14, no. 4, pp. 1003–1017,
Dec. 2017.

[15] T. Hussain, K. Muhammad, J. D. Ser, S. W. Baik, and
V. H. C. de Albuquerque, “Intelligent embedded vision for sum-
marization of multiview videos in IIoT,” IEEE Trans. Ind. Informat.,
vol. 16, no. 4, pp. 2592–2602, Apr. 2020.

[16] M. Shen et al., “Blockchain-assisted secure device authentication for
cross-domain industrial IoT,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 942–954, May 2020.

[17] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Gener. Comput. Syst., vol. 79,
pp. 849–861, Feb. 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X17302224

[18] G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and health: Internet
of things, big data, and cloud computing for Healthcare 4.0,” J. Ind.
Inf. Integr., vol. 18, Jun. 2020, Art. no. 100129. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2452414X19300135

[19] J. Cui, F. Wang, Q. Zhang, Y. Xu, and H. Zhong, “Anonymous message
authentication scheme for semitrusted edge-enabled IIoT,” IEEE Trans.
Ind. Electron., vol. 68, no. 12, pp. 12921–12929, Dec. 2021.

[20] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge
computing for secure and scalable IIoT critical infrastructures in industry
4.0,” IEEE Internet Things J., vol. 8, no. 4, pp. 2300–2317, Feb. 2021.

[21] S. Chen, Z. Pang, H. Wen, K. Yu, T. Zhang, and Y. Lu, “Automated
labeling and learning for physical layer authentication against clone node
and Sybil attacks in industrial wireless edge networks,” IEEE Trans. Ind.
Informat., vol. 17, no. 3, pp. 2041–2051, Mar. 2021.

[22] W. Ali, I. Ud Din, A. Almogren, M. Guizani, and M. Zuair,
“A lightweight privacy-aware IoT-based metering scheme for smart
industrial ecosystems,” IEEE Trans. Ind. Informat., vol. 17, no. 9,
pp. 6134–6143, Sep. 2021.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

[23] J. Cui, L. Wei, J. Zhang, Y. Xu, and H. Zhong, “An efficient
message-authentication scheme based on edge computing for vehicu-
lar ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 5,
pp. 1621–1632, May 2019.

[24] S. Jiang, X. Zhu, and L. Wang, “An efficient anonymous batch authen-
tication scheme based on HMAC for VANETs,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 8, pp. 2193–2204, Aug. 2016.

[25] Z. Yang, C. Jin, Y. Tian, J. Lai, and J. Zhou, “LiS: Lightweight
signature schemes for continuous message authentication in cyber-
physical systems,” in Proc. 15th ACM Asia Conf. Comput. Commun.
Security, New York, NY, USA, 2020, pp. 719–731. [Online]. Available:
https://doi.org/10.1145/3320269.3372195

[26] S. Yu, J. YoungLee, M. Kim, and Y. Park, “A secure biometric based
user authentication protocol in wireless sensor networks,” in Proc. 10th
Annu. Comput. Commun. Workshop Conf. (CCWC), 2020, pp. 830–834.

[27] C. Esposito, A. Castiglione, F. Palmieri, and A. De Santis, “Integrity
for an event notification within the industrial Internet of Things by
using group signatures,” IEEE Trans. Ind. Informat., vol. 14, no. 8,
pp. 3669–3678, Aug. 2018.

[28] S. Hussain, S. A. Chaudhry, O. A. Alomari, M. H. Alsharif, M. K. Khan,
and N. Kumar, “Amassing the security: An ECC-based authentica-
tion scheme for Internet of drones,” IEEE Syst. J., vol. 15, no. 3,
pp. 4431–4438, Sep. 2021.

[29] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari, “A
robust ECC-based provable secure authentication protocol with privacy
preserving for industrial Internet of Things,” IEEE Trans. Ind. Informat.,
vol. 14, no. 8, pp. 3599–3609, Aug. 2018.

[30] H. Xiong, Y. Wu, C. Su, and K.-H. Yeh, “A secure and efficient certifi-
cateless batch verification scheme with invalid signature identification
for the Internet of Things,” J. Inf. Security Appl., vol. 53, Aug. 2020,
Art. no. 102507. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214212619307999

[31] J. Liu, H. Cao, Q. Li, F. Cai, X. Du, and M. Guizani, “A large-scale con-
current data anonymous batch verification scheme for mobile healthcare
crowd sensing,” IEEE Internet Things J., vol. 6, no. 2, pp. 1321–1330,
Apr. 2019.

[32] C. Guo, X. Jiang, K.-K. R. Choo, X. Tang, and J. Zhang, “Lightweight
privacy preserving data aggregation with batch verification for smart
grid,” Future Gener. Comput. Syst., vol. 112, pp. 512–523, Nov. 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X1933225X

[33] J. Zhang, H. Zhong, J. Cui, Y. Xu, and L. Liu, “An extensible and
effective anonymous batch authentication scheme for smart vehicu-
lar networks,” IEEE Internet Things J., vol. 7, no. 4, pp. 3462–3473,
Apr. 2020.

[34] H. Yang et al., “Blockchain-enabled tripartite anonymous identification
trusted service provisioning in industrial IoT,” IEEE Internet Things J.,
vol. 9, no. 3, pp. 2419–2431, Feb. 2022.

[35] D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,” J. Cryptol., vol. 13, no. 3, pp. 361–396, 2000.

[36] “Miracl core.” Accessed: Oct. 12, 2020. [Online]. Available: https:
//github.com/miracl/core

Jie Cui (Senior Member, IEEE) was born in
Henan Province, China, in 1980. He received
the Ph.D. degree from the University of Science
and Technology of China in 2012. He is cur-
rently a Professor and a Ph.D. Supervisor with the
School of Computer Science and Technology, Anhui
University. He has over 150 scientific publications in
reputable journals (e.g., IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING, IEEE
TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON MOBILE

COMPUTING, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
IEEE TRANSACTIONS ON CLOUD COMPUTING and IEEE TRANSACTIONS

ON MULTIMEDIA), academic books and international conferences. His cur-
rent research interests include applied cryptography, IoT security, vehicular
ad hoc network, cloud computing security, and software-defined networking.

Fengqun Wang is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology, Anhui University. His research focuses
on the security of Industrial Internet of Things.

Qingyang Zhang was born in Anhui Province,
China, in 1992. He received the B.Eng. and Ph.D.
degrees in computer science from Anhui University
in 2021, where he is currently a Lecturer with the
School of Computer Science and Technology. His
research interest includes edge computing, computer
systems, and security.

Chengjie Gu received the Ph.D. degree
from the Nanjing University of Posts and
Telecommunications in 2012. From 2012 to 2017,
he was an Innovation Team Leader with the 38th
Research Institute of CETC and conducted research
and development in the communication and
networking sector. He is currently a President of
Security Research Institute with New H3C Group.
He is also supported by a Postdoctoral Fellowship
with USTC. He is a High-Level Innovation Leader
of Anhui province and a Cybersecurity Expert of

Zhejiang province in China. His research interest includes network security
and trusted network architecture.

Hong Zhong was born in Anhui Province, China,
in 1965. She received the Ph.D. degree in computer
science from the University of Science and
Technology of China in 2005. She is currently a
Professor and a Ph.D. Supervisor with the School
of Computer Science and Technology, Anhui
University. She has over 200 scientific publications
in reputable journals (e.g., IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, IEEE TRANSACTIONS ON MOBILE

COMPUTING, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS, IEEE TRANSACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON CLOUD

COMPUTING, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, and IEEE
TRANSACTIONS ON BIG DATA), academic books, and international con-
ferences. Her research interests include applied cryptography, IoT security,
vehicular ad hoc network, cloud computing security, and software-defined
networking.

Authorized licensed use limited to: Anhui University. Downloaded on June 13,2024 at 07:41:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

